Opportunity cost#
OC – opportunity cost.
Formula for it:
OC := Direction * Unexecuted_QTY * (Arrival_Mid_Price - Exit_Mid_Price)
To calculate the Opportunity Cost (OC) for orders, we need to determine the direction of each order, the unexecuted quantity (Unexecuted_QTY), the arrival mid-price (Arrival_Mid_Price), and the exit mid-price (Exit_Mid_Price). The OC is then calculated using the provided formula. Here’s how you can do it using onetick.py
:
import onetick.py as otp
# Define the symbol, orders database, quotes database, and date
symbol = 'TSLA'
orders_db = 'ORDERS_DB'
quotes_db = 'NYSE_TAQ'
date = otp.dt(2022, 3, 2)
# Load orders and quotes data
orders = otp.DataSource(orders_db, tick_type='ORDER', symbol=symbol)
quotes = otp.DataSource(quotes_db, tick_type='QTE', symbol=symbol)
# Add mid-price for every quote
quotes['MID_PRICE'] = (quotes['ASK_PRICE'] + quotes['BID_PRICE']) / 2
# Join quotes to orders without any filtration
joined_data = otp.join_by_time([orders, quotes])
# Roll up order, save the first mid price (arrival mid price) and the last mid price (exit mid price)
orders_agg = joined_data.agg({
'ARRIVAL_MID_PRICE': otp.agg.first('MID_PRICE'),
'EXIT_MID_PRICE': otp.agg.last('MID_PRICE'),
'SIDE': otp.agg.first('SIDE'),
'UNEXECUTED_QTY': otp.agg.sum(joined_data['QTY'] - joined_data['QTY_FILLED'])
}, group_by='ID')
# Calculate Direction (1 for BUY, -1 for SELL)
orders_agg['DIRECTION'] = orders_agg.apply(lambda tick: 1 if tick['SIDE'] == 'BUY' else -1)
# Calculate OC (Opportunity Cost)
orders_agg['OC'] = orders_agg['DIRECTION'] * orders_agg['UNEXECUTED_QTY'] * (orders_agg['ARRIVAL_MID_PRICE'] - orders_agg['EXIT_MID_PRICE'])
# Select relevant fields
orders_with_oc = orders_agg[['ID', 'OC']]
# Run the query for the specified date
df = otp.run(orders_with_oc, date=date)