Time-Based Joins#

Time series analysis often involves looking up information from other time series for relevant time ranges. OneTick has built-in functions for this.

join_by_time: Enhancing a time series with information from other time series at the time of each tick#

Below we’ll enhance the trades with the prevailing quote (i.e., best bid and ask) at the time of each trade. We’ll first look just at trades, then just at quotes, and finally we’ll join the two.

Let’s examine the trades first.

import onetick.py as otp

s = otp.dt(2024, 2, 1, 9, 30)
e = otp.dt(2024, 2, 1, 9, 30, 1)

trd = otp.DataSource('US_COMP_SAMPLE', tick_type='TRD')
trd = trd[['PRICE', 'SIZE']]
otp.run(trd, start=s, end=e, symbols=['AAPL'])
Time PRICE SIZE
0 2024-02-01 09:30:00.000961260 184.010 302
1 2024-02-01 09:30:00.000961491 184.000 100
2 2024-02-01 09:30:00.000961701 184.000 1
3 2024-02-01 09:30:00.000973163 184.000 1
4 2024-02-01 09:30:00.000973355 184.000 5
... ... ... ...
574 2024-02-01 09:30:00.987184691 183.900 9
575 2024-02-01 09:30:00.990378350 183.920 1
576 2024-02-01 09:30:00.991941892 183.935 1
577 2024-02-01 09:30:00.993785116 183.905 300
578 2024-02-01 09:30:00.996512511 183.934 5

579 rows × 3 columns

Now let’s take a look at the quotes (or rather the ‘national best bid/offer’).

Note the back_to_first_tick parameter which seeks a tick before query start time and ensures that there is at least one quote at the start of the query (its actual timestamp is before the start).

It’s commonly used when we want to find the tick (e.g., last quote or trade) at a given time:

qte = otp.DataSource('US_COMP_SAMPLE', tick_type='NBBO', back_to_first_tick=86400)
qte = qte[['BID_PRICE', 'ASK_PRICE']]

given_time = otp.dt(2024, 2, 15, 9, 30)
otp.run(qte, start=given_time, end=given_time, symbols=['AAPL'])
Time BID_PRICE ASK_PRICE
0 2024-02-15 09:30:00 183.41 183.53

Or when we want to make sure there is tick at the start of the query interval (e.g., to make sure the trades have a prevailing quote even if it’s from before the query start time):

qte = otp.DataSource('US_COMP_SAMPLE', tick_type='NBBO', back_to_first_tick=60)
qte = qte[['BID_PRICE', 'ASK_PRICE']]
otp.run(qte, start=s, end=e, symbols=['AAPL'])
Time BID_PRICE ASK_PRICE
0 2024-02-01 09:30:00.000000000 184.00 184.14
1 2024-02-01 09:30:00.000860953 184.00 184.14
2 2024-02-01 09:30:00.000969529 183.90 184.14
3 2024-02-01 09:30:00.005907962 183.90 184.07
4 2024-02-01 09:30:00.006859453 183.90 184.07
... ... ... ...
497 2024-02-01 09:30:00.955093516 183.88 183.93
498 2024-02-01 09:30:00.959097743 183.88 183.93
499 2024-02-01 09:30:00.960533572 183.88 183.93
500 2024-02-01 09:30:00.973387417 183.89 183.93
501 2024-02-01 09:30:00.987461418 183.89 183.93

502 rows × 3 columns

We “enhance” the trades with the information from the quotes.

enh_trd = otp.join_by_time([trd, qte])
otp.run(enh_trd, start=s, end=e, symbols=['AAPL'])
Time PRICE SIZE BID_PRICE ASK_PRICE
0 2024-02-01 09:30:00.000961260 184.010 302 184.00 184.14
1 2024-02-01 09:30:00.000961491 184.000 100 184.00 184.14
2 2024-02-01 09:30:00.000961701 184.000 1 184.00 184.14
3 2024-02-01 09:30:00.000973163 184.000 1 183.90 184.14
4 2024-02-01 09:30:00.000973355 184.000 5 183.90 184.14
... ... ... ... ... ...
574 2024-02-01 09:30:00.987184691 183.900 9 183.89 183.93
575 2024-02-01 09:30:00.990378350 183.920 1 183.89 183.93
576 2024-02-01 09:30:00.991941892 183.935 1 183.89 183.93
577 2024-02-01 09:30:00.993785116 183.905 300 183.89 183.93
578 2024-02-01 09:30:00.996512511 183.934 5 183.89 183.93

579 rows × 5 columns

In other words, each trade is joined with the quote that was active at the time the trade took place. We can examine the quote time to make sure it’s before the trade time.

qte['quote_time'] = qte['Time']
enh_trd = otp.join_by_time([trd, qte])
otp.run(enh_trd, start=s, end=e, symbols=['AAPL'])
Time PRICE SIZE BID_PRICE ASK_PRICE quote_time
0 2024-02-01 09:30:00.000961260 184.010 302 184.00 184.14 2024-02-01 09:30:00.000860953
1 2024-02-01 09:30:00.000961491 184.000 100 184.00 184.14 2024-02-01 09:30:00.000860953
2 2024-02-01 09:30:00.000961701 184.000 1 184.00 184.14 2024-02-01 09:30:00.000860953
3 2024-02-01 09:30:00.000973163 184.000 1 183.90 184.14 2024-02-01 09:30:00.000969529
4 2024-02-01 09:30:00.000973355 184.000 5 183.90 184.14 2024-02-01 09:30:00.000969529
... ... ... ... ... ... ...
574 2024-02-01 09:30:00.987184691 183.900 9 183.89 183.93 2024-02-01 09:30:00.973387417
575 2024-02-01 09:30:00.990378350 183.920 1 183.89 183.93 2024-02-01 09:30:00.987461418
576 2024-02-01 09:30:00.991941892 183.935 1 183.89 183.93 2024-02-01 09:30:00.987461418
577 2024-02-01 09:30:00.993785116 183.905 300 183.89 183.93 2024-02-01 09:30:00.987461418
578 2024-02-01 09:30:00.996512511 183.934 5 183.89 183.93 2024-02-01 09:30:00.987461418

579 rows × 6 columns

Join-by-time Use Cases#

Prevailing quote at the time of a trade

Computing Markouts

join_with_query: Executing a query on each tick#

Sometimes we want to do a look up based on the information provided in a tick. For example, we may have a series of order ticks each containing an order arrival and exit times and we may want to find the market vwap during the interval. Let’s take this one step at a time.

Let’s find the market vwap for a given time range (i.e., for a given start and end).

q = otp.DataSource('US_COMP_SAMPLE', tick_type='TRD')
q = q.agg({'market_vwap': otp.agg.vwap('PRICE', 'SIZE')})
otp.run(q, start=s, end=e, symbols=['AAPL'])
Time market_vwap
0 2024-02-01 09:30:01 183.901435

Next let’s create a couple of orders each with its own values for start/end specified in the arrival/exit columns.

orders = otp.Ticks(arrival=[s, s + otp.Milli(7934)],
                   exit=[e, e + otp.Milli(9556)],
                   sym=['AAPL', 'MSFT'])
otp.run(orders)
Time arrival exit sym
0 2003-12-01 00:00:00.000 2024-02-01 09:30:00.000 2024-02-01 09:30:01.000 AAPL
1 2003-12-01 00:00:00.001 2024-02-01 09:30:07.934 2024-02-01 09:30:10.556 MSFT

We can wrap the code that finds vwap into a function and call it for each order while passing the relevant parameters for start, end, and symbol.

def vwap(symbol):
    q = otp.DataSource('US_COMP_SAMPLE', tick_type='TRD')
    q = q.agg({'market_vwap': otp.agg.vwap('PRICE', 'SIZE')})
    return q

orders = otp.Ticks(arrival=[s, s + otp.Milli(7934)],
                   exit=[e, e + otp.Milli(9556)],
                   sym=['AAPL', 'MSFT'])
orders = orders.join_with_query(vwap, start=orders['arrival'], end=orders['exit'], symbol=orders['sym'])
otp.run(orders, start=s, end=s + otp.Day(1))
Time market_vwap arrival exit sym
0 2024-02-01 09:30:00.000 183.901435 2024-02-01 09:30:00.000 2024-02-01 09:30:01.000 AAPL
1 2024-02-01 09:30:00.001 402.840416 2024-02-01 09:30:07.934 2024-02-01 09:30:10.556 MSFT

Interval VWAP: the efficient way#

The code above provides an implementation for this use case. However, a more efficient implementation may be useful when the number of orders is large. It appears below.

def vwap(symbol):
    q = otp.DataSource('US_COMP_SAMPLE', tick_type='TRD')
    q = q.agg({'market_vwap': otp.agg.vwap('PRICE','SIZE')})
    return q

orders = otp.Ticks(arrival=[s, s + otp.Milli(7934)],
                   exit=[e, e + otp.Milli(9556)],
                   sym=['AAPL', 'MSFT'])

orders['_PARAM_START_TIME_NANOS'] = orders['arrival']
orders['_PARAM_END_TIME_NANOS'] = orders['exit']
orders['SYMBOL_NAME'] = orders['sym']
otp.run(vwap, symbols=orders, date=otp.dt(2024, 2, 1))
{'AAPL':                  Time  market_vwap
 0 2024-02-01 09:30:01   183.901435,
 'MSFT':                      Time  market_vwap
 0 2024-02-01 09:30:10.556   402.840416}

A separate query is executed for each order in parallel. Each order becomes a symbol that specifies the security and the start/end time. The logic in vwap() is executed for every (“unbound”) symbol. This is more efficient than calling join_with_query as it can be parallelized better. See “Databases, symbols, and tick types” under Concepts for more info.

Note that the start and end parameters are not important for the run method as each of the symbols specifies its own start/end time in _PARAM_START_TIME_NANOS and _PARAM_END_TIME_NANOS.