Variables and Data Structures#

Variables (aka ‘state variables’)#

Variables can be used to keep track of state across ticks. The example below shows how we may keep track of P&L.

import onetick.py as otp
s = otp.dt(2023, 5, 15, 9, 30)
e = otp.dt(2023, 5, 15, 9, 30, 1)

trd = otp.Ticks({'PRICE': [13.5, 13.6, 13.3, 14.0],
                 'SIZE': [200, 100, 150, 200],
                 'SIDE': ['B', 'S', 'B', 'S']})

trd.state_vars['PROFIT'] = 0
trd.state_vars['PROFIT'] += trd.apply(
    lambda t: t['PRICE'] * t['SIZE'] if t['SIDE'] == 'S' else -(t['PRICE'] * t['SIZE'])
)

trd['PROFIT'] = trd.state_vars['PROFIT']

otp.run(trd)
Time PRICE SIZE SIDE PROFIT
0 2003-12-01 00:00:00.000 13.5 200 B -2700
1 2003-12-01 00:00:00.001 13.6 100 S -1340
2 2003-12-01 00:00:00.002 13.3 150 B -3335
3 2003-12-01 00:00:00.003 14.0 200 S -535

The variable ‘PROFIT’ keeps a running total. In other words, it aggregates state across trades.

Note that the same can be accomplished without variables by keeping the running total in a separate column.

trd = otp.Ticks({'PRICE': [13.5, 13.6, 13.3, 14.0],
                 'SIZE': [200, 100, 150, 200],
                 'SIDE': ['B', 'S', 'B', 'S']})
trd['VALUE'] = trd.apply(
    lambda t: t['PRICE'] * t['SIZE'] if t['SIDE'] == 'S' else -(t['PRICE'] * t['SIZE'])
)
trd = trd.agg({'PROFIT': otp.agg.sum('VALUE')}, running=True)
otp.run(trd)
Time PROFIT
0 2003-12-01 00:00:00.000 -2700.0
1 2003-12-01 00:00:00.001 -1340.0
2 2003-12-01 00:00:00.002 -3335.0
3 2003-12-01 00:00:00.003 -535.0

Below is an example of using variables that cannot be as easily implemented with running totals: remembering the value of the last tick and referring to it after grouping/aggregation.

q = otp.Ticks(X=[-1, 3, -3, 4, 2], Y=[0, 1, 1, 0, 3])
q.state_vars['last_x'] = 0
q.state_vars['last_x'] = q['X']
q = q.high('X', group_by=['Y'])
q['last_x'] = q.state_vars['last_x']
otp.run(q)
Time X Y last_x
0 2003-12-01 00:00:00.001 3 1 2
1 2003-12-01 00:00:00.003 4 0 2
2 2003-12-01 00:00:00.004 2 3 2

Dictionaries / Maps (aka tick sets)#

Looking up static data for every tick#

A map can be created with keys taken from one or more columns and holding entire ticks as values.

The example below uses exchange reference data to create a map keyed by exchange code.

exchanges = otp.Ticks(EXCHANGE=['A', 'B', 'C', 'D', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'],
          NAME=['NYSE American (Amex)', 'Nasdaq BX', 'NYSE National (NSX)', 'FINRA ADF + NYSE/Nasdaq TRFs', 'MIAX Pearl', 'International Securities Exchange', 'Cboe EDGA', 'Cboe EDGX', 'Long-Term Stock Exchange (LTSE)', 'NYSE Chicago', 'New York Stock Exchange', 'NYSE Arca', 'Nasdaq (Tape C securities)', 'Consolidated Tape System (CTS)', 'Nasdaq (Tape A,B securities)', 'Members Exchange (MEMX)', "The Investors' Exchange (IEX)", 'CBOE Stock Exchange (CBSX)', 'Nasdaq PSX', 'Cboe BYX', 'Cboe BZX'])
exchanges['LOCATION'] = 'US'
otp.run(exchanges)
Time EXCHANGE NAME LOCATION
0 2003-12-01 00:00:00.000 A NYSE American (Amex) US
1 2003-12-01 00:00:00.001 B Nasdaq BX US
2 2003-12-01 00:00:00.002 C NYSE National (NSX) US
3 2003-12-01 00:00:00.003 D FINRA ADF + NYSE/Nasdaq TRFs US
4 2003-12-01 00:00:00.004 H MIAX Pearl US
5 2003-12-01 00:00:00.005 I International Securities Exchange US
6 2003-12-01 00:00:00.006 J Cboe EDGA US
7 2003-12-01 00:00:00.007 K Cboe EDGX US
8 2003-12-01 00:00:00.008 L Long-Term Stock Exchange (LTSE) US
9 2003-12-01 00:00:00.009 M NYSE Chicago US
10 2003-12-01 00:00:00.010 N New York Stock Exchange US
11 2003-12-01 00:00:00.011 P NYSE Arca US
12 2003-12-01 00:00:00.012 Q Nasdaq (Tape C securities) US
13 2003-12-01 00:00:00.013 S Consolidated Tape System (CTS) US
14 2003-12-01 00:00:00.014 T Nasdaq (Tape A,B securities) US
15 2003-12-01 00:00:00.015 U Members Exchange (MEMX) US
16 2003-12-01 00:00:00.016 V The Investors' Exchange (IEX) US
17 2003-12-01 00:00:00.017 W CBOE Stock Exchange (CBSX) US
18 2003-12-01 00:00:00.018 X Nasdaq PSX US
19 2003-12-01 00:00:00.019 Y Cboe BYX US
20 2003-12-01 00:00:00.020 Z Cboe BZX US

We will add exchange name to trades. First let’s examine the trades.

q = otp.DataSource('NYSE_TAQ', tick_type='TRD')
q = q[['PRICE', 'SIZE', 'COND', 'EXCHANGE']]
otp.run(q, start=s, end=e, symbols=['SPY'])
Time PRICE SIZE COND EXCHANGE
0 2023-05-15 09:30:00.000178688 412.22 100 T P
1 2023-05-15 09:30:00.000776704 412.22 247 Z
2 2023-05-15 09:30:00.003603456 412.22 100 T T
3 2023-05-15 09:30:00.006352128 412.24 1 I K
4 2023-05-15 09:30:00.007128064 412.24 3 I K
... ... ... ... ... ...
310 2023-05-15 09:30:00.934032640 412.27 160 T T
311 2023-05-15 09:30:00.975609344 412.24 2 I D
312 2023-05-15 09:30:00.980264448 412.27 1 I D
313 2023-05-15 09:30:00.985391616 412.28 100 T
314 2023-05-15 09:30:00.985394944 412.28 100 Q T

315 rows × 5 columns

The value of the EXCHANGE field from trades will be used to look up the name of the corresponding exchange.

q = otp.DataSource('NYSE_TAQ', tick_type='TRD')
q = q[['PRICE','SIZE','COND','EXCHANGE']]
exchanges = otp.Ticks(EXCHANGE=['A', 'B', 'C', 'D', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'],
          NAME=['NYSE American (Amex)', 'Nasdaq BX', 'NYSE National (NSX)', 'FINRA ADF + NYSE/Nasdaq TRFs', 'MIAX Pearl', 'International Securities Exchange', 'Cboe EDGA', 'Cboe EDGX', 'Long-Term Stock Exchange (LTSE)', 'NYSE Chicago', 'New York Stock Exchange', 'NYSE Arca', 'Nasdaq (Tape C securities)', 'Consolidated Tape System (CTS)', 'Nasdaq (Tape A,B securities)', 'Members Exchange (MEMX)', "The Investors' Exchange (IEX)", 'CBOE Stock Exchange (CBSX)', 'Nasdaq PSX', 'Cboe BYX', 'Cboe BZX'])

q.state_vars['exchanges'] = otp.state.tick_set('latest', 'EXCHANGE', otp.eval(exchanges))
q['exchange_name'] = q.state_vars['exchanges'].find('NAME', 'unknown')

otp.run(q, start=s, end=e, symbols=['SPY'])
Time PRICE SIZE COND EXCHANGE exchange_name
0 2023-05-15 09:30:00.000178688 412.22 100 T P NYSE Arca
1 2023-05-15 09:30:00.000776704 412.22 247 Z Cboe BZX
2 2023-05-15 09:30:00.003603456 412.22 100 T T Nasdaq (Tape A,B securities)
3 2023-05-15 09:30:00.006352128 412.24 1 I K Cboe EDGX
4 2023-05-15 09:30:00.007128064 412.24 3 I K Cboe EDGX
... ... ... ... ... ... ...
310 2023-05-15 09:30:00.934032640 412.27 160 T T Nasdaq (Tape A,B securities)
311 2023-05-15 09:30:00.975609344 412.24 2 I D FINRA ADF + NYSE/Nasdaq TRFs
312 2023-05-15 09:30:00.980264448 412.27 1 I D FINRA ADF + NYSE/Nasdaq TRFs
313 2023-05-15 09:30:00.985391616 412.28 100 T Nasdaq (Tape A,B securities)
314 2023-05-15 09:30:00.985394944 412.28 100 Q T Nasdaq (Tape A,B securities)

315 rows × 6 columns

Checking if ticks are present in another time series#

A tick set can be used to check if (a small number of) ticks are present in another time series with potentially different time stamps.

We generate two “special” ticks.

ticks = otp.Ticks(PRICE=[412.22, 400], SIZE=[247, 1000], INDEX=[1, 2])
otp.run(ticks)
Time PRICE SIZE INDEX
0 2003-12-01 00:00:00.000 412.22 247 1
1 2003-12-01 00:00:00.001 400.00 1000 2

We then check if any of the trades match these ticks by PRICE and SIZE.

q = otp.DataSource('NYSE_TAQ', tick_type='TRD')
q = q[['PRICE', 'SIZE', 'COND', 'EXCHANGE']]

q.state_vars['special_ticks'] = otp.state.tick_set('latest', ['PRICE', 'SIZE'], otp.eval(ticks))
q['special'] = q.state_vars['special_ticks'].find('INDEX', -1)

q, _ = q[q['special'] != -1]

otp.run(q, start=s, end=e, symbols=['SPY'])
Time PRICE SIZE COND EXCHANGE special
0 2023-05-15 09:30:00.000776704 412.22 247 Z 1

Lists and Queues#

Lists and double-ended queues (deques) can be used to keep track of collections ticks.

Lists and Queues Use Cases#

Realized P&L (FIFO)