otp.DataSource#
- class DataSource(db=None, symbol=utils.adaptive, tick_type=utils.adaptive, start=utils.adaptive, end=utils.adaptive, date=None, schema_policy=None, guess_schema=utils.adaptive, identify_input_ts=None, back_to_first_tick=False, keep_first_tick_timestamp=0, max_back_ticks_to_prepend=None, where_clause_for_back_ticks=1, symbols=None, presort=None, batch_size=utils.adaptive, concurrency=None, schema=utils.default, **kwargs)#
Bases:
onetick.py.core.source.Source
Construct a source providing data from a given
db
.Warning
Default value of the parameter
schema_policy
enables automatic deduction of the data schema, but it is highly not recommended for production code. For details see Schema deduction mechanism.- Parameters
db (str, list of str,
otp.DB
, default=None) – Name(s) of the database or the database object(s).symbol (str, list of str,
Source
,query
,eval query
, default=onetick.py.adaptive
) – Symbol(s) from which data should be taken.tick_type (str, list of str, default=
onetick.py.adaptive
) – Tick type of the data. If not specified, all ticks from db will be taken. If ticks can’t be found or there are many databases specified in db then default is “TRD”.start (
datetime.datetime
,otp.datetime
,onetick.py.adaptive
, default=onetick.py.adaptive
) – Start of the interval from which the data should be taken. Default isonetick.py.adaptive
, making the final query deduce the time limits from the rest of the graph.end (
datetime.datetime
,otp.datetime
,onetick.py.adaptive
, default=onetick.py.adaptive
) – End of the interval from which the data should be taken. Default isonetick.py.adaptive
, making the final query deduce the time limits from the rest of the graph.date (
datetime.datetime
,otp.datetime
, default=None) – Allows to specify a whole day instead of passing explicitlystart
andend
parameters. If it is set along with thestart
andend
parameters then last two are ignored.schema_policy (‘tolerant’, ‘tolerant_strict’, ‘fail’, ‘fail_strict’, ‘manual’, ‘manual_strict’, default=
onetick.py.adaptive
) –Schema deduction policy:
’tolerant’ (default) The resulting schema is a combination of
schema
and database schema. If the database schema can be deduced, it’s checked to be type-compatible with aschema
, and ValueError is raised if checks are failed. Also, with this policy database is scanned 5 days back to find the schema. It is useful when database is misconfigured or in case of holidays.’tolerant_strict’ The resulting schema will be
schema
if it’s not empty. Otherwise, database schema is used. If the database schema can be deduced, it’s checked if it lacks fields from theschema
and it’s checked to be type-compatible with aschema
and ValueError is raised if checks are failed. Also, with this policy database is scanned 5 days back to find the schema. It is useful when database is misconfigured or in case of holidays.’fail’ The same as ‘tolerant’, but if the database schema can’t be deduced, raises an Exception.
’fail_strict’ The same as ‘tolerant_strict’, but if the database schema can’t be deduced, raises an Exception.
’manual’ The resulting schema is a combination of
schema
and database schema. Compatibility with database schema will not be checked.’manual_strict’ The resulting schema will be exactly
schema
. Compatibility with database schema will not be checked. If some fields specified inschema
do not exist in the database, their values will be set to some default value for a type (0 for integers, NaNs for floats, empty string for strings, epoch for datetimes).
Default value is ‘tolerant’ (if deprecated parameter
guess_schema
is not set). Ifguess_schema
is set to True then value is ‘fail’, if False then ‘manual’.Default value can be changed with
otp.config.default_schema_policy
configuration parameter.guess_schema (bool, default=None) –
Deprecated since version 1.3.16.
Use
schema_policy
parameter instead.If
guess_schema
is set to True thenschema_policy
value is ‘fail’, if False then ‘manual’.identify_input_ts (bool, default=False) – If set to False, the fields SYMBOL_NAME and TICK_TYPE are not appended to the output ticks.
back_to_first_tick (int, offset,
otp.expr
,Operation
, default=0) – Determines how far back to go looking for the latest tick beforestart
time. If one is found, it is inserted into the output time series with the timestamp set tostart
time. Note: it will be rounded to int, so otp.Millis(999) will be 0 seconds.keep_first_tick_timestamp (str, default=None) – If set, new field with this name will be added to source. This field contains original timestamp of the tick that was taken from before the start time of the query. For all other ticks value in this field will be equal to the value of Time field. This parameter is ignored if
back_to_first_tick
is not set.max_back_ticks_to_prepend (int, default=1) – When the
back_to_first_tick
interval is specified, this parameter determines the maximum number of the most recent ticks before start_time that will be prepended to the output time series. Their timestamp will be changed to start_time.where_clause_for_back_ticks (onetick.py.core.column_operations.base.Raw, default=None) – A logical expression that is computed only for the ticks encountered when a query goes back from the start time, in search of the ticks to prepend. If it returns false, a tick is ignored.
symbols (str, list of str,
Source
,query
,eval query
,onetick.query.GraphQuery
., default=None) – Symbol(s) from which data should be taken. Alias forsymbol
parameter. Will take precedence over it.presort (bool, default=
onetick.py.adaptive
) – Add the presort EP in case of bound symbols. Applicable only whensymbols
is not None. By default, it is set to True ifsymbols
are set and to False otherwise.batch_size (int, default=None) – Specifies the query batch size for the
presort
. By default, the value fromotp.config.default_batch_size
is used.concurrency (int, default=
onetick.py.utils.default
) –Specifies the number of CPU cores to utilize for the
presort
. By default, the value is inherited from the value of the query where this PRESORT is used.For the main query it may be specified in the
concurrency
parameter ofrun()
method (which by default is set tootp.config.default_concurrency
).For the auxiliary queries (like first-stage queries) empty value means OneTick’s default of 1. If
otp.config.presort_force_default_concurrency
is set then default concurrency value will be set in all PRESORT EPs in all queries.schema (Optional[Dict[str, type]], default=None) – Dict of <column name> -> <column type> pairs that the source is expected to have. If the type is irrelevant, provide None as the type in question.
kwargs (type[str]) – Deprecated. Use
schema
instead. List of <column name> -> <column type> pairs that the source is expected to have. If the type is irrelevant, provide None as the type in question.
Note
If interval that was set for
DataSource
viastart
/end
ordate
parameters does not match intervals in otherSource
objects used in query, or does not match the whole query interval, thenmodify_query_times()
will be applied to thisDataSource
with specified interval as start and end times parameters.If
symbols
parameter is omitted, you need to specify unbound symbols for the query insymbols
parameter ofonetick.py.run()
function.If
symbols
parameter is set,otp.merge
is used to merge all passed bound symbols. In this case you don’t need to specify unbound symbols inonetick.py.run()
call.It’s not allowed to specify bound and unbound symbols at the same time.
Examples
Query a single symbol from a database:
>>> data = otp.DataSource(db='SOME_DB', tick_type='TT', symbols='S1') >>> otp.run(data) Time X 0 2003-12-01 00:00:00.000 1 1 2003-12-01 00:00:00.001 2 2 2003-12-01 00:00:00.002 3
Parameter
symbols
can be a list. In this case specified symbols will be merged into a single data flow:>>> data = otp.DataSource(db='SOME_DB', tick_type='TT', symbols=['S1', 'S2']) >>> otp.run(data) Time X 0 2003-12-01 00:00:00.000 1 1 2003-12-01 00:00:00.000 -3 2 2003-12-01 00:00:00.001 2 3 2003-12-01 00:00:00.001 -2 4 2003-12-01 00:00:00.002 3 5 2003-12-01 00:00:00.002 -1
Parameter
identify_input_ts
can be used to automatically add field with symbol name for each tick:>>> data = otp.DataSource(db='SOME_DB', tick_type='TT', symbols=['S1', 'S2'], identify_input_ts=True) >>> otp.run(data) Time SYMBOL_NAME TICK_TYPE X 0 2003-12-01 00:00:00.000 S1 TT 1 1 2003-12-01 00:00:00.000 S2 TT -3 2 2003-12-01 00:00:00.001 S1 TT 2 3 2003-12-01 00:00:00.001 S2 TT -2 4 2003-12-01 00:00:00.002 S1 TT 3 5 2003-12-01 00:00:00.002 S2 TT -1
Source also can be passed as symbols, in such case magic named column SYMBOL_NAME will be transform to symbol and all other columns will be symbol parameters
>>> symbols = otp.Ticks(SYMBOL_NAME=['S1', 'S2']) >>> data = otp.DataSource(db='SOME_DB', symbols=symbols, tick_type='TT') >>> otp.run(data) Time X 0 2003-12-01 00:00:00.000 1 1 2003-12-01 00:00:00.000 -3 2 2003-12-01 00:00:00.001 2 3 2003-12-01 00:00:00.001 -2 4 2003-12-01 00:00:00.002 3 5 2003-12-01 00:00:00.002 -1
Default schema policy is tolerant.
>>> data = otp.DataSource( ... db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', schema={'PRICE': float}, date=otp.dt(2022, 3, 1), ... ) >>> data.schema {'PRICE': <class 'float'>, 'SIZE': <class 'int'>}
>>> data = otp.DataSource( ... db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', schema={'PRICE': int}, date=otp.dt(2022, 3, 1), ... ) Traceback (most recent call last): ... ValueError: Database(-s) NYSE_TAQ::TRD schema field PRICE has type <class 'float'>, but <class 'int'> was requested
Schema policy manual uses exactly
schema
:>>> data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', schema={'PRICE': float}, ... date=otp.dt(2022, 3, 1), schema_policy='manual') >>> data.schema {'PRICE': <class 'float'>}
Schema policy fail raises an exception if the schema cannot be deduced:
>>> data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', date=otp.dt(2021, 3, 1), ... schema_policy='fail') Traceback (most recent call last): ... ValueError: No ticks found in database(-s) NYSE_TAQ::TRD
back_to_first_tick
sets how far back to go looking for the latest tick beforestart
time:>>> data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', date=otp.dt(2022, 3, 2), ... back_to_first_tick=otp.Day(1)) >>> otp.run(data) Time PRICE SIZE 0 2022-03-02 00:00:00.000 1.4 50 1 2022-03-02 00:00:00.000 1.0 100 2 2022-03-02 00:00:00.001 1.1 101 3 2022-03-02 00:00:00.002 1.2 102
keep_first_tick_timestamp
allows to show the original timestamp of the tick that was taken from before the start time of the query:>>> data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', date=otp.dt(2022, 3, 2), ... back_to_first_tick=otp.Day(1), keep_first_tick_timestamp='ORIGIN_TIMESTAMP') >>> otp.run(data) Time ORIGIN_TIMESTAMP PRICE SIZE 0 2022-03-02 00:00:00.000 2022-03-01 00:00:00.002 1.4 50 1 2022-03-02 00:00:00.000 2022-03-02 00:00:00.000 1.0 100 2 2022-03-02 00:00:00.001 2022-03-02 00:00:00.001 1.1 101 3 2022-03-02 00:00:00.002 2022-03-02 00:00:00.002 1.2 102
max_back_ticks_to_prepend
is used withback_to_first_tick
if more than 1 ticks before start time should be retrieved:>>> data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', date=otp.dt(2022, 3, 2), ... max_back_ticks_to_prepend=2, back_to_first_tick=otp.Day(1), ... keep_first_tick_timestamp='ORIGIN_TIMESTAMP') >>> otp.run(data) Time ORIGIN_TIMESTAMP PRICE SIZE 0 2022-03-02 00:00:00.000 2022-03-01 00:00:00.001 1.4 10 1 2022-03-02 00:00:00.000 2022-03-01 00:00:00.002 1.4 50 2 2022-03-02 00:00:00.000 2022-03-02 00:00:00.000 1.0 100 3 2022-03-02 00:00:00.001 2022-03-02 00:00:00.001 1.1 101 4 2022-03-02 00:00:00.002 2022-03-02 00:00:00.002 1.2 102
where_clause_for_back_ticks
is used to filter out ticks before the start time:data = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', symbols='AAPL', date=otp.dt(2022, 3, 2), where_clause_for_back_ticks=otp.raw('SIZE>=50', dtype=bool), back_to_first_tick=otp.Day(1), max_back_ticks_to_prepend=2, keep_first_tick_timestamp='ORIGIN_TIMESTAMP') df = otp.run(data) print(df)
Time ORIGIN_TIMESTAMP PRICE SIZE 0 2022-03-02 00:00:00.000 2022-03-01 00:00:00.000 1.3 100 1 2022-03-02 00:00:00.000 2022-03-01 00:00:00.002 1.4 50 2 2022-03-02 00:00:00.000 2022-03-02 00:00:00.000 1.0 100 3 2022-03-02 00:00:00.001 2022-03-02 00:00:00.001 1.1 101 4 2022-03-02 00:00:00.002 2022-03-02 00:00:00.002 1.2 102