otp.state.tick_set_unordered#
- tick_set_unordered(insertion_policy, key_fields, default_value=None, max_distinct_keys=- 1, scope='query', schema=None)#
Defines unordered tick set.
- Parameters
insertion_policy ('oldest' or 'latest') – ‘oldest’ specifies not to overwrite ticks with the same keys. ‘latest’ makes the last inserted tick overwrite the one with the same keys (if existing).
key_fields (str, list of str) – The values of the specified fields will be used as keys.
max_distinct_keys (int) –
Expected size of the unordered tick set. It will be used to allocate memory to hold ticks in the tick set. It should have the same order as the expected amounts of ticks held in the set. Default value of -1 indicates that expected amount of ticks is not known in advance. If this value is set correctly, the performance of unordered tick set is expected to be better than that of normal tick set.
Warning
If
max_distinct_keys
value is set too low, the performance of unordered tick set may be considerably worse than that of normal tick set. In particular, default value of -1 will lead to bad performance and should be avoideddefault_value (
eval query
) – Evaluated query to initialize unordered tick set from.scope (str,) – Scope for the state variable. Possible values are: query, branch, cross_symbol, all_inputs, all_outputs
Desired schema for the created unordered tick set. If not passed, schema will be inherited from
default_value
. ifdefault_value
is not passed as well, schema will contain fields of the main Source object.If schema is passed as a list, it will select only these fields from the schema of
default_value
or main Source object.
- Return type
Examples
>>> def fsq(): ... return otp.Ticks(B=[1, 1, 2, 2, 3, 3]) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set_unordered('oldest', 'B', otp.eval(fsq), max_distinct_keys=5) >>> data = data.state_vars['SET'].dump() >>> otp.run(data)[['B']] B 0 1 1 2 2 3
- class TickSetUnordered(*args, max_distinct_keys=- 1, **kwargs)#
Bases:
onetick.py.core._internal._state_objects.TickSet
Represents an unordered tick set. This class should only be created with
onetick.py.state.tick_set_unordered()
function and should be added to theonetick.py.Source.state_vars()
dictionary of theonetick.py.Source
and can be accessed only via this dictionary.Examples
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set_unordered('oldest', 'A', max_distinct_keys=10) >>> data = data.state_vars['SET'].dump()
See also
- clear()#
Clear tick set. Can be used in per-tick script and on Source directly.
- inplace: bool
If
True
current source will be modified else modified copy will be returned. Makes sense only if used not in per-tick script.
- Returns
if
inplace
is False and method is not used in per-tick scriptthen returns
Source
copy.
Examples
Can be used in per-tick script:
>>> def fun(tick): ... tick.state_vars['SET'].clear() >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.script(fun)
Can be used in source columns operations:
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1))) >>> data = data.state_vars['SET'].clear()
>>> data = data.state_vars['SET'].dump() >>> otp.run(data) Empty DataFrame Columns: [A, Time] Index: []
- dump(when_to_dump='every_tick', **kwargs)#
Propagates all ticks from a given tick sequence upon the arrival of input tick. Timestamps of all propagated ticks are equal to the input tick’s TIMESTAMP.
- Parameters
propagate_input_ticks (bool) – Propagate input ticks or not.
when_to_dump (str) –
first_tick - Propagates once before input ticks. There must be at least one input tick.
before_tick - Propagates once before input ticks. Content will be propagated even if there are no input ticks.
every_tick - Propagates before each input tick.
delimiter ('tick', 'flag or None) –
This parameter specifies the policy for adding the delimiter field. The name of the additional field is “DELIMITER” +
added_field_name_suffix
. Possible options are:None - No additional field is added to propagated ticks.
’tick’ - An extra tick is created after the last tick. Also, an additional column is added to output ticks. The extra tick has values of all fields set to the defaults (0,NaN,””), except the delimiter field, which is set to string “D”. All other ticks have this field’s value set to empty string.
’flag’ - The delimiter field is appended to each output tick. The field’s value is empty for all ticks except the last tick of the tick sequence, which is string “D”.
added_field_name_suffix (str or None) – The suffix to add to the name of the additional field.
inplace (bool) – If
True
current source will be modified else modified copy will be returned
- Return type
if
inplace
is False then returnsSource
copy.
Examples
>>> def another_query(): ... return otp.Ticks(B=[1, 2, 3]) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'B', otp.eval(another_query)) >>> data = data.state_vars['SET'].dump() >>> otp.run(data)[['B']] B 0 1 1 2 2 3
- erase(*key_values, **named_keys)#
Erase tick(s) from tick set with keys or through
TickSequenceTick
- Parameters
key_values (list, optional) – List of tick set’s keys values that will be used to find tick. If single TickSequenceTick is used, only it is removed. If two TickSequenceTicks are used, the whole (excluding right boundary) interval between them is removed.
named_keys (dict, optional) – Dict of tick set’s keys named and values that will be used to find tick.
- Returns
Operation
that evaluates to boolean.(1 if tick was erased, and 0 if tick was not in tick set).
- Return type
Examples
Can be used in per-tick script:
>>> def fun(tick): ... tick['B'] = tick.state_vars['SET'].erase(1) ... tick.state_vars['SET'].erase(A=1) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.script(fun)
Can be used in source columns operations:
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'B', otp.eval(otp.Ticks(B=[1, 2, 3]))) >>> data['C1'] = data.state_vars['SET'].erase(1) >>> data['C2'] = data.state_vars['SET'].erase(1)
>>> otp.run(data) Time A C1 C2 0 2003-12-01 1 1 0
>>> data = data.state_vars['SET'].dump() >>> otp.run(data) Time B 0 2003-12-01 2 1 2003-12-01 3
Can be used with
execute()
method to do erasing without returning result asOperation
:>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'B', otp.eval(otp.Tick(B=2))) >>> data = data.execute(data.state_vars['SET'].erase(B=2))
Example with single TickSetTick:
>>> def fun(tick): ... tick['RES'] = 0 ... for tt in tick.state_vars['set']: ... if tick.state_vars['set'].erase(tt): ... tick['RES'] += 1 ... tick['LEN'] = tick.state_vars['set'].get_size() >>> data = otp.Tick(X=1) >>> data.state_vars['set'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Ticks(A=[1, 2, 3]))) >>> data = data.script(fun) >>> otp.run(data) Time X RES LEN 0 2003-12-01 1 3 0
Example with two TickSetTicks:
>>> def fun(tick): ... t1 = otp.tick_set_tick() ... t2 = otp.tick_set_tick() ... if tick.state_vars['set'].find(t1, 2) + tick.state_vars['set'].find(t2, 4) == 2: ... tick.state_vars['set'].erase(t1, t2) ... for tt in tick.state_vars['set']: ... tick['RES'] += tt.get_value('A') >>> data = otp.Tick(X=1, RES=0) >>> data.state_vars['set'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Ticks(A=[1, 2, 3, 4]))) >>> data = data.script(fun) >>> otp.run(data) Time X RES 0 2003-12-01 1 5
- erase_by_named_keys(**named_keys)#
Alias for erase with restricted set of parameters
See also
- Return type
- find(field_name, default_value=None, *key_values, throw=False, **named_keys)#
Finds a tick in the specified tick set for the given keys. If
field_name
is a string, it returns the value of the specified field from the found tick. If a tick with the given keys is not found, the default value is returned. Iffield_name
isTickSequenceTick
, the entire tick is returned.- Parameters
field_name (str,
TickSequenceTick
) – The field to return the value from or an object for returning an entire tick.default_value – The value to be returned if the key is not found. If
default_value
omitted and the key is not found, default “zero” value for the field type will be returned. Ifthrow
is True, the positional argument fordefault_value
counts as the firstkey_values
argument.key_values – The same number of arguments as the number of keys in the tick set, in the same order as they were specified when defining the tick set. Values can be specified explicitly or taken from the specified columns. Columns must be specified as
source['col']
as opposed to just'col'
.key_values
are optional: if not specified (andnamed_keys
are not specified either), the values for the keys are taken from the tick’s columns.named_keys – Can be used instead of
key_values
by specifying thekey=value
named arguments.throw (bool) – Raise an exception if the key is not found. If
True
, the positional argument fordefault_value
counts as the firstkey_values
argument.
- Return type
Examples
Create a tick set keyed by the values of
A
. Look up the value ofB
in the tick set for the value ofA
in the current tick.>>> data = otp.Tick(A=1, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', 999) >>> otp.run(data) Time A B 0 2003-12-01 1 4
A key can be specified explicitly (i.e., not taken from the key fields of the current tick).
>>> data = otp.Tick(C=777, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', 999, 1) >>> otp.run(data) Time C B 0 2003-12-01 777 4
A key can be specified explicitly as a
key=value
pair.>>> data = otp.Tick(C=777, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', 999, A=1) >>> otp.run(data) Time C B 0 2003-12-01 777 4
Columns can be used as keys.
>>> data = otp.Tick(C=1, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', 999, data['C']) >>> otp.run(data) Time C B 0 2003-12-01 1 4
The
default_value
is returned if the key is not found.>>> data = otp.Tick(A=555, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', 999) >>> otp.run(data) Time A B 0 2003-12-01 555 999
Throw an exception if the key is not found (there is no
default_value
whenthrow=True
):>>> data = otp.Tick(A=555, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data['B'] = data.state_vars['SET'].find('B', throw=True) >>> otp.run(data) Traceback (most recent call last): Exception: 9: ERROR:
find
can be used inotp.Source.script
.>>> def fun(tick): ... tick['B'] = tick.state_vars['SET'].find('B', 0, 1) >>> data = otp.Tick(A=1, B=2) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1, B=4))) >>> data = data.script(fun) >>> otp.run(data) Time A B 0 2003-12-01 1 4
In
otp.Source.script
find
can be used withTickSetTick
. It allows looking up a whole tick, rather than the value of a single field:>>> def fun(tick): ... t = otp.tick_set_tick() ... if tick.state_vars['SET'].find(t, 2): ... tick['B'] = t['B'] ... tick['C'] = t['C'] ... tick['D'] = t['D'] >>> def another_query(): ... return otp.Ticks(B=[1, 2, 3], C=[4, 5, 6,], D=[7, 8, 9]) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'B', otp.eval(another_query)) >>> data = data.script(fun) >>> otp.run(data) Time A B C D 0 2003-12-01 1 2 5 8
- find_by_named_keys(field_name, default_value=None, **named_keys)#
Alias for find with restricted set of parameters
See also
- Return type
- find_or_throw(field_name, *key_values)#
Alias for find with restricted set of parameters
See also
- Return type
- get_size()#
Get size of the tick set. Can be used in per-tick script or in Source operations directly.
- Return type
Operation
that evaluates to float value.
Examples
Can be used in per-tick script:
>>> def fun(tick): ... tick['B'] = tick.state_vars['SET'].get_size() >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.script(fun)
Can be used in source columns operations:
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data['B'] = data.state_vars['SET'].get_size()
>>> otp.run(data) Time A B 0 2003-12-01 1 0
- insert(tick_object=None)#
Insert tick into tick set.
- Parameters
tick_object – Can be set only in per-tick script. If not set the current tick is inserted into tick set.
- Returns
Operation
that evaluates to boolean.(1 if tick was inserted, and 0 if tick was already presented in tick set).
- Return type
Examples
Can be used in per-tick script:
>>> def fun(tick): ... tick.state_vars['SET'].insert(tick) ... tick.state_vars['SET'].insert() >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.script(fun)
Can be used in source columns operations:
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data['B'] = data.state_vars['SET'].insert() >>> data['C'] = data.state_vars['SET'].insert()
>>> otp.run(data) Time A B C 0 2003-12-01 1 1 0
>>> data = data.state_vars['SET'].dump() >>> otp.run(data) Time A 0 2003-12-01 1
Can be used with
execute()
method to do insertion without returning result asOperation
:>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.execute(data.state_vars['SET'].insert())
Inserting current tick in script by passing it to insert method apply the changes made to tick:
>>> def fun(tick): ... tick['A'] = 2 ... tick.state_vars['SET'].insert(tick) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('latest', 'A') >>> data = data.script(fun) >>> data = data.state_vars['SET'].dump() >>> otp.run(data) Time A 0 2003-12-01 2
If you want to insert current tick without applied changes use input attribute:
>>> def fun(tick): ... tick['A'] = 2 ... tick.state_vars['SET'].insert(tick.input) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('latest', 'A') >>> data = data.script(fun) >>> data = data.state_vars['SET'].dump() >>> otp.run(data) Time A 0 2003-12-01 1
- property key_fields#
Get key fields for this tick set
- modify_from_query(query, symbol=None, start=None, end=None, params=None, action='replace', where=None, output_field_name=None)#
Modifies a
state variable
by assigning it a value that was resulted from aquery
evaluation.- Parameters
query (callable, Source) –
Callable
query
should returnSource
. This object will be evaluated by OneTick (not python) for every tick. Note python code will be executed only once, so all python’s conditional expressions will be evaluated only once too.If
query
is aSource
object then it will be propagated as a query to OneTick.If state
var
is a primitive (not tick sequence), thenquery
must return only one tick, otherwise exception will be raised.symbol (str, Operation, dict, Source, or Tuple[Union[str, Operation], Union[dict, Source]]) –
Symbol name to use in
query
. In addition, symbol params can be passed along with symbol name.Symbol name can be passed as a string or as an
Operation
.Symbol parameters can be passed as a dictionary. Also, the main
Source
object, or the object containing a symbol parameter list, can be used as a list of symbol parameters.symbol
will be interpreted as a symbol name or as symbol parameters, depending on its type. You can pass both as a tuple.If symbol name is not passed, then symbol name from the main source is used.
start (datetime, Operation) – Start time to run the
query
. By default the start time of the main query is used.end (datetime, Operation) – End time to run the
query
. By default the end time of the main query is used.params (dict) – Mapping of the parameters’ names and their values for the
query
.Columns
can be used as a value.action (str) – Specifies whether all ticks should be erased before the query results are inserted into the tick set. Possible values are
update
andreplace
. For non-tick-sets, you can set theaction
only toreplace
; otherwise, an error is thrown.where (Operation) – Condition to filter ticks for which the result of the
query
will be joined.output_field_name (str) – Specifies the output field name for state variables of primitive types, in case if the query result contains multiple fields.
- Returns
Source with joined ticks from
query
- Return type
Source
Examples
Update simple state variable from query:
data = otp.Ticks(A=[1, 2, 3]) data.state_vars['VAR'] = 0 data.state_vars['VAR'] = 7 def fun(): return otp.Tick(X=123, Y=234) data = data.state_vars['VAR'].modify_from_query(fun, output_field_name='X', where=(data['A'] % 2 == 1)) data['X'] = data.state_vars['VAR'] df = otp.run(data) print(df)
Time A X 0 2003-12-01 00:00:00.000 1 123 1 2003-12-01 00:00:00.001 2 7 2 2003-12-01 00:00:00.002 3 123
Update tick sequence from query:
data = otp.Tick(A=1) data.state_vars['VAR'] = otp.state.tick_list() def fun(): return otp.Ticks(X=[123, 234]) data = data.state_vars['VAR'].modify_from_query(fun) data = data.state_vars['VAR'].dump() df = otp.run(data) print(df)
Time X 0 2003-12-01 00:00:00.000 123 1 2003-12-01 00:00:00.001 234
Passing parameters to the
query
:data = otp.Tick(A=1) data.state_vars['VAR'] = otp.state.tick_list() def fun(min_value): t = otp.Ticks(X=[123, 234]) t, _ = t[t['X'] > min_value] return t data = data.state_vars['VAR'].modify_from_query(fun, params={'min_value': 200}) data = data.state_vars['VAR'].dump() df = otp.run(data) print(df)
Time X 0 2003-12-01 00:00:00.001 234
See also
MODIFY_STATE_VAR_FROM_QUERY OneTick event processor
- present(*key_values)#
Check if tick with these key values is present in tick set.
- Return type
Operation
that evaluates to boolean (float value 1 or 0).
Examples
Can be used in per-tick script:
>>> def fun(tick): ... tick['B'] = tick.state_vars['SET'].present(1) >>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.script(fun)
Can be used in source columns operations:
>>> data = otp.Tick(A=1) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A', otp.eval(otp.Tick(A=1))) >>> data['B'] = data.state_vars['SET'].present(1) >>> data['C'] = data.state_vars['SET'].present(2)
>>> otp.run(data) Time A B C 0 2003-12-01 1 1 0
- size()#
See also
- Return type
- update(where=1, value_fields=None, erase_condition=0)#
Insert into or delete ticks from tick set. Can be used only on Source directly.
- Parameters
where (
Operation
) – Selection of input ticks that will be inserted into tick set. By default, all input ticks are selected.value_fields (list of str) – List of value fields to be inserted into tick sets. If param is empty, all fields of input tick are inserted. Note that this applies only to non-key fields (key-fields are always included). If new fields are added to tick set, they will have default values according to their type. If some fields are in tick set schema but not added in this method, they will have default values.
erase_condition (
Operation
) – Selection of input ticks that will be erased from tick set. If it is set thenwhere
parameter is not taken into account.inplace (bool) – If
True
current source will be modified else modified copy will be returned
- Return type
if
inplace
is False then returnsSource
copy.
Examples
>>> data = otp.Ticks(A=[1, 2, 3], B=[4, 5, 6], C=[7, 8, 9]) >>> data.state_vars['SET'] = otp.state.tick_set('oldest', 'A') >>> data = data.state_vars['SET'].update(value_fields=['B']) >>> data = data.state_vars['SET'].update(data['A'] == 2) >>> data = data.state_vars['SET'].update(erase_condition=data['A'] == 2)
>>> data = data.first().state_vars['SET'].dump(when_to_dump='first_tick') >>> otp.run(data) Time A B 0 2003-12-01 1 4 1 2003-12-01 3 6