otp.Source.multi_portfolio_price#
- Source.multi_portfolio_price(portfolios_query, columns='PRICE', running=False, bucket_interval=0, bucket_time='end', bucket_units=None, bucket_end_condition=None, end_condition_per_group=False, boundary_tick_bucket='new', group_by=None, weight_field_name='', weight_multiplier_field_name='', side='both', weight_type='absolute', portfolios_query_params='', portfolio_value_field_name='VALUE', symbols=None)#
MULTI_PORTFOLIO_PRICE
aggregation.For each bucket, computes weighted portfolio price for multiple portfolios.
- Parameters
portfolios_query (str,
Source
) –A mandatory parameter that the specifies server-side .otq file that is expected to return mandatory columns
PORTFOLIO_NAME
andSYMBOL_NAME
, as well as an optional columnsWEIGHT
,FX_SYMBOL_NAME
andFX_MULTIPLY
.For a local OneTick server you can pass otp.Source objects.
columns (str or list of Column or str, default=PRICE) –
A list of the names of the input fields for which portfolio value is computed.
Could be set as a comma-separated list of the names or
list
of name strings/Columns
objects.running (bool, default=False) –
Aggregation will be calculated as sliding window.
running
andbucket_interval
parameters determines when new buckets are created.running
= Trueaggregation will be calculated in a sliding window.
bucket_interval
= N (N > 0)Window size will be N. Output tick will be generated when tick “enter” window (arrival event) and when “exit” window (exit event)
bucket_interval
= 0Left boundary of window will be bound to start time. For each tick aggregation will be calculated in [start_time; tick_t].
running
= Falsebuckets partition the [query start time, query end time) interval into non-overlapping intervals of size
bucket_interval
(with the last interval possibly of a smaller size). Ifbucket_interval
is set to 0 a single bucket for the entire interval is created.Note that in non-running mode OneTick unconditionally divides the whole time interval into specified number of buckets. It means that you will always get this specified number of ticks in the result, even if you have less ticks in the input data.
Default: False
bucket_interval (int or
Operation
orOnetickParameter
orsymbol parameter
or datetime offset object, default=0) –Determines the length of each bucket (units depends on
bucket_units
).If
Operation
of bool type is passed, acts asbucket_end_condition
.Bucket interval can be set via datetime offset objects like
otp.Second
,otp.Minute
,otp.Hour
,otp.Day
,otp.Month
. In this case you could omit settingbucket_units
parameter.Bucket interval can also be set with integer
OnetickParameter
orsymbol parameter
.bucket_time (Literal['start', 'end'], default=end) –
Control output timestamp.
start
the timestamp assigned to the bucket is the start time of the bucket.
end
the timestamp assigned to the bucket is the end time of the bucket.
bucket_units (Optional[Literal['seconds', 'ticks', 'days', 'months', 'flexible']], default=None) –
Set bucket interval units.
By default, if
bucket_units
andbucket_end_condition
not specified, set to seconds. Ifbucket_end_condition
specified, thenbucket_units
set to flexible.If set to flexible then
bucket_end_condition
must be set.Note that seconds bucket unit doesn’t take into account daylight-saving time of the timezone, so you may not get expected results when using, for example, 24 * 60 * 60 seconds as bucket interval. In such case use days bucket unit instead. See example in
onetick.py.agg.sum()
.bucket_end_condition (condition, default=None) –
An expression that is evaluated on every tick. If it evaluates to “True”, then a new bucket is created. This parameter is only used if
bucket_units
is set to “flexible”.Also can be set via
bucket_interval
parameter by passingOperation
object.end_condition_per_group (bool, default=False) –
Controls application of
bucket_end_condition
in groups.end_condition_per_group
= Truebucket_end_condition
is applied only to the group defined bygroup_by
end_condition_per_group
= Falsebucket_end_condition
applied across all groups
This parameter is only used if
bucket_units
is set to “flexible”.When set to True, applies to all bucketing conditions. Useful, for example, if you need to specify
group_by
, and you want to group items first, and create buckets after that.boundary_tick_bucket (Literal['new', 'previous'], default=new) –
Controls boundary tick ownership.
previous
A tick on which
bucket_end_condition
evaluates to “true” belongs to the bucket being closed.new
tick belongs to the new bucket.
This parameter is only used if
bucket_units
is set to “flexible”group_by (list, str or expression, default=None) – When specified, each bucket is broken further into additional sub-buckets based on specified field values. If
Operation
is used then GROUP_{i} column is added. Where i is index in group_by list. For example, if Operation is the only element ingroup_by
list then GROUP_0 field will be added.weight_field_name (Optional, str or Column, default=) –
The name of the field that contains the current value of weight for a member of the portfolio that contributed the tick.
You can also specify weight through the value of symbol parameter
WEIGHT
.If
weight_field_name
is specified, all ticks should have the field pointed by this parameter and the value of this field is used as the weight.If weights are not specified in any of these ways, and you are running a single-stage query, the weights take the default value
1
.weight_multiplier_field_name (str, default=) – Name of the field, value from which is used for multiplying portfolio value result.
side (Literal['long', 'short', 'both'], default=both) –
When set to long, the price of the portfolio is computed only for the input time series with
weight > 0
.When set to short, the price of the portfolio is computed only for the input time series with
weight < 0
.When set to both, the price of the portfolio is computed for all input time series.
weight_type (Literal['absolute', 'relative'], default=absolute) –
When set to
absolute
, the portfolio price is computed as the sum ofinput_field_value*weight
across all members of the portfolio.When set to
relative
, the portfolio price is computed as the sum ofinput_field_value*weight/sum_of_all_weights
across all members of the portfolio.portfolios_query_params (Union[str, Dict[str, str]], default=) – An optional parameter that specifies parameters of the query specified in portfolios_query.
portfolio_value_field_name (Union[str, List[Union[str, onetick.py.core.column.Column]]], default=VALUE) –
List of the names (string with comma-separated list or
list
of strings/Columns
) of the output fields which contain computed values of the portfolio.The number of the field names must match the number of the field names listed in the columns parameter.
symbols (str, list of str,
Source
,query
,eval query
,onetick.query.GraphQuery
., default=None) – Symbol(s) from which data should be taken.
- Return type
Examples
Basic example, by default this EP takes
PRICE
column as input>>> data = otp.DataSource( ... 'NYSE_TAQ', tick_type='TRD', date=otp.dt(2022, 3, 1) ... ) >>> data = data.multi_portfolio_price( ... portfolios_query='some_query.otq::portfolios_query', ... symbols=['NYSE_TAQ::AAPL', 'NYSE_TAQ::MSFT', 'NYSE_TAQ::ORCL'], ... ) >>> otp.run(data) Time VALUE NUM_SYMBOLS PORTFOLIO_NAME 0 2003-12-01 95.0 3 PORTFOLIO_1 1 2003-12-01 47.5 1 PORTFOLIO_2 2 2003-12-01 32.5 2 PORTFOLIO_3
Override
weight
returned byportfolios_query
withweight_field_name
>>> data = otp.DataSource( ... 'NYSE_TAQ', tick_type='TRD', date=otp.dt(2022, 3, 1) ... ) >>> data['WEIGHT'] = 2 >>> data = data.multi_portfolio_price( ... portfolios_query='some_query.otq::portfolios_query', ... weight_field_name='WEIGHT', ... symbols=['NYSE_TAQ::AAPL', 'NYSE_TAQ::MSFT', 'NYSE_TAQ::ORCL'], ... ) >>> otp.run(data) Time VALUE NUM_SYMBOLS PORTFOLIO_NAME 0 2003-12-01 38.0 3 PORTFOLIO_1 1 2003-12-01 19.0 1 PORTFOLIO_2 2 2003-12-01 13.0 2 PORTFOLIO_3
Pass parameters to the query from
portfolios_query
viaportfolios_query_params
>>> data = otp.DataSource( ... 'NYSE_TAQ', tick_type='TRD', date=otp.dt(2022, 3, 1) ... ) >>> data = data.multi_portfolio_price( ... portfolios_query='some_query.otq::portfolios_query_with_param', ... symbols=['NYSE_TAQ::AAPL', 'NYSE_TAQ::MSFT', 'NYSE_TAQ::ORCL'], ... portfolios_query_params={'PORTFOLIO_1_NAME': 'CUSTOM_NAME'} ... ) >>> otp.run(data) Time VALUE NUM_SYMBOLS PORTFOLIO_NAME 0 2003-12-01 95.0 3 CUSTOM_NAME 1 2003-12-01 47.5 1 PORTFOLIO_2 2 2003-12-01 32.5 2 PORTFOLIO_3
Use
otp.Source
object asportfolios_query
(only for local queries)>>> portfolios = otp.Ticks( ... SYMBOL_NAME=['NYSE_TAQ::AAPL', 'NYSE_TAQ::MSFT', 'NYSE_TAQ::AAPL'], ... PORTFOLIO_NAME=['PORTFOLIO_1', 'PORTFOLIO_1', 'PORTFOLIO_2'], ... WEIGHT=[1, 1, 2], ... ) >>> data = otp.DataSource( ... 'NYSE_TAQ', tick_type='TRD', date=otp.dt(2022, 3, 1) ... ) >>> data = data.multi_portfolio_price( ... portfolios_query=portfolios, ... symbols=['NYSE_TAQ::AAPL', 'NYSE_TAQ::MSFT'], ... ) >>> otp.run(data) Time VALUE NUM_SYMBOLS PORTFOLIO_NAME 0 2003-12-01 47.5 2 PORTFOLIO_1 1 2003-12-01 46.0 1 PORTFOLIO_2
See also
MULTI_PORTFOLIO_PRICE OneTick event processor