otp.Operation.str.ilike#
- ilike(pattern)#
- Check if the value is case insensitive matched with SQL-like - pattern.- Parameters
- pattern (str or symbol parameter ( - _SymbolParamColumn)) –- Pattern to match the value with. The pattern can contain usual text characters and two special ones: - %represents zero or more characters
- _represents a single character
 - Use backslash - \character to escape these special characters.
- Returns
- Trueif the match was successful,- Falseotherwise. Note that boolean Operation is converted to float if added as a column.
- Return type
 - Examples - Use - %character to specify any number of characters:- data = otp.Ticks(X=['a', 'ab', 'Ab', 'b_']) data['LIKE'] = data['X'].str.ilike('a%') df = otp.run(data) print(df) - Time X LIKE 0 2003-12-01 00:00:00.000 a 1.0 1 2003-12-01 00:00:00.001 ab 1.0 2 2003-12-01 00:00:00.002 Ab 1.0 3 2003-12-01 00:00:00.003 b_ 0.0 - Use - _special character to specify a single character:- data = otp.Ticks(X=['a', 'ab', 'Ab', 'b_']) data['LIKE'] = data['X'].str.ilike('a_') df = otp.run(data) print(df) - Time X LIKE 0 2003-12-01 00:00:00.000 a 0.0 1 2003-12-01 00:00:00.001 ab 1.0 2 2003-12-01 00:00:00.002 Ab 1.0 3 2003-12-01 00:00:00.003 b_ 0.0 - Use backslash - \character to escape special characters:- data = otp.Ticks(X=['a', 'ab', 'bb', 'b_']) data['LIKE'] = data['X'].str.ilike(r'b\_') df = otp.run(data) print(df) - Time X LIKE 0 2003-12-01 00:00:00.000 a 0.0 1 2003-12-01 00:00:00.001 ab 0.0 2 2003-12-01 00:00:00.002 bb 0.0 3 2003-12-01 00:00:00.003 b_ 1.0 - This function can be used to filter out ticks: - data = otp.Ticks(X=['a', 'ab', 'Ab', 'b_']) data = data.where(data['X'].str.ilike('a%')) df = otp.run(data) print(df) - Time X 0 2003-12-01 00:00:00.000 a 1 2003-12-01 00:00:00.001 ab 2 2003-12-01 00:00:00.002 Ab - patterncan only be a constant expression, like string or symbol parameter:- data = otp.Ticks(X=['a', 'ab', 'A', 'b_']) data['LIKE'] = data['X'].str.ilike(data.Symbol['PATTERN', str]) df = otp.run(data, symbols=otp.Tick(SYMBOL_NAME='COMMON::AAPL', PATTERN='_'))['COMMON::AAPL'] print(df) - Time X LIKE 0 2003-12-01 00:00:00.000 a 1.0 1 2003-12-01 00:00:00.001 ab 0.0 2 2003-12-01 00:00:00.002 A 1.0 3 2003-12-01 00:00:00.003 b_ 0.0