otp.join_by_time#

join_by_time(sources, how='outer', on=None, policy=None, check_schema=True, leading=0, match_if_identical_times=None, output_type_index=None, use_rename_ep=True, source_fields_order=None)#

Joins ticks from multiple input time series, based on input tick timestamps.

leading source tick joined with already arrived ticks from other sources.

>>> leading = otp.Ticks(A=[1, 2], offset=[1, 3])
>>> other = otp.Ticks(B=[1], offset=[2])
>>> otp.run(otp.join_by_time([leading, other]))
                     Time  A  B
0 2003-12-01 00:00:00.001  1  0
1 2003-12-01 00:00:00.003  2  1

In case you willing to add prefix/suffix to all columns in one of the sources you should use Source.add_prefix() or Source.add_suffix()

Parameters
  • sources (Collection[Source]) – The collection of Source objects which will be joined

  • how ('outer' or 'inner') – The method of join (“inner” or “outer”). Inner join logic will propagate ticks only if all sources participated in forming it. Outer join will propagate all ticks even if they couldn’t be joined with other sources (in this case the fields from other sources will have “zero” values depending on the type of the field). Default is “outer”.

  • on (Collection[Column]) –

    on add an extra check to join - only ticks with same on fields will be joined

    >>> leading = otp.Ticks(A=[1, 2], offset=[1, 3])
    >>> other = otp.Ticks(A=[2, 2], B=[1, 2], offset=[0, 2])
    >>> otp.run(otp.join_by_time([leading, other], on=['A']))
                         Time  A  B
    0 2003-12-01 00:00:00.001  1  0
    1 2003-12-01 00:00:00.003  2  2
    

  • policy ('arrival_order', 'latest_ticks', 'each_for_leader_with_first' or 'each_for_leader_with_latest') –

    Policy of joining ticks with the same timestamps. The default value is “arrival_order” by default, but is set to “latest_ticks” if parameter match_if_identical_times is set to True.

    >>> leading = otp.Ticks(A=[1, 2], offset=[0, 0], OMDSEQ=[0, 3])
    >>> other = otp.Ticks(B=[1, 2], offset=[0, 0], OMDSEQ=[2, 4])
    

    Note: in the examples below we assume that all ticks have same timestamps, but order of ticks as in example. OMDSEQ is a special field that store order of ticks with same timestamp

    • arrival_order output tick generated on arrival of leading source tick

    >>> data = otp.join_by_time([leading, other], policy='arrival_order')
    >>> otp.run(data)[['Time', 'A', 'B']]
            Time  A  B
    0 2003-12-01  1  0
    1 2003-12-01  2  1
    
    • latest_ticks Tick generated at the time of expiration of a particular timestamp (when all ticks from all sources for current timestamp arrived). Only latest tick from leading source will be used.

    >>> data = otp.join_by_time([leading, other], policy='latest_ticks')
    >>> otp.run(data)[['Time', 'A', 'B']]
            Time  A  B
    0 2003-12-01  2  2
    
    • each_for_leader_with_first Each tick from leading source will be joined with first tick from other sources for current timestamp

    >>> data = otp.join_by_time(
    ...     [leading, other],
    ...     policy='each_for_leader_with_first'
    ... )
    >>> otp.run(data)[['Time', 'A', 'B']]
            Time  A  B
    0 2003-12-01  1  1
    1 2003-12-01  2  1
    
    • each_for_leader_with_latest Each tick from leading source will be joined with last tick from other sources for current timestamp

    >>> data = otp.join_by_time(
    ...     [leading, other],
    ...     policy='each_for_leader_with_latest'
    ... )
    >>> otp.run(data)[['Time', 'A', 'B']]
            Time  A  B
    0 2003-12-01  1  2
    1 2003-12-01  2  2
    

  • check_schema (bool) – If True onetick.py will check that all columns names are unambiguous and columns listed in on param are exists in sources schema. Which can lead to false positive error in case of some event processors were sink to Source. To avoid this set check_scheme to False.

  • leading (int, ‘all’, Source, list of int, list of Source) – A list of sources or their indexes. If this parameter is ‘all’, every source is considered to be leading. The logic of the leading source depends on policy parameter. The default value is 0, meaning the first specified source will be the leader.

  • match_if_identical_times (bool) – A True value of this parameter causes an output tick to be formed from input ticks with identical timestamps only. If parameter how is set to ‘outer’, default values of fields (otp.nan, 0, empty string) are propagated for sources that did not tick at a given timestamp. If this parameter is set to True, the default value of policy parameter is set to ‘latest_ticks’.

  • output_type_index (int) – Specifies index of source in sources from which type and properties of output will be taken. Useful when joining sources that inherited from Source. By default output object type will be Source.

  • use_rename_ep (bool) – This parameter specifies if onetick.query.RenameFields event processor will be used in internal implementation of this function or not. This event processor can’t be used in generic aggregations, so set this parameter to False if join_by_time is used in generic aggregation logic.

  • source_fields_order (list of int, list of Source) – Controls the order of fields in output ticks. If set, all input sources indexes or objects must be specified. By default, the order of the sources is the same as in the sources list.

Returns

A time series of ticks.

Return type

Source or same class as sources[output_type_index]

Examples

>>> d1 = otp.Ticks({'A': [1, 2, 3], 'offset': [1, 2, 3]})
>>> d2 = otp.Ticks({'B': [1, 2, 4], 'offset': [1, 2, 4]})
>>> otp.run(d1)
                     Time  A
0 2003-12-01 00:00:00.001  1
1 2003-12-01 00:00:00.002  2
2 2003-12-01 00:00:00.003  3
>>> otp.run(d2)
                     Time  B
0 2003-12-01 00:00:00.001  1
1 2003-12-01 00:00:00.002  2
2 2003-12-01 00:00:00.004  4

Default joining logic, outer join with the first source is the leader by default:

>>> otp.run(otp.join_by_time([d1, d2]))
                     Time  A  B
0 2003-12-01 00:00:00.001  1  0
1 2003-12-01 00:00:00.002  2  1
2 2003-12-01 00:00:00.003  3  2

Leading source can be changed by using parameter leading:

>>> otp.run(otp.join_by_time([d1, d2], leading=1))
                     Time  A  B
0 2003-12-01 00:00:00.001  1  1
1 2003-12-01 00:00:00.002  2  2
2 2003-12-01 00:00:00.004  3  4

Note that OneTick’s logic is different depending on the order of sources specified, so specifying leading parameter in the previous example is not the same as changing the order of sources here:

>>> otp.run(otp.join_by_time([d2, d1], leading=0))
                     Time  B  A
0 2003-12-01 00:00:00.001  1  0
1 2003-12-01 00:00:00.002  2  1
2 2003-12-01 00:00:00.004  4  3

Parameter source_fields_order can be used to change the order of fields in the output, but it also affects the joining logic the same way as changing the order of sources:

>>> otp.run(otp.join_by_time([d1, d2], leading=1, source_fields_order=[1, 0]))
                     Time  B  A
0 2003-12-01 00:00:00.001  1  0
1 2003-12-01 00:00:00.002  2  1
2 2003-12-01 00:00:00.004  4  3

Parameter how can be set to “inner”. In this case only ticks that were successfully joined from all sources will be propagated:

>>> otp.run(otp.join_by_time([d1, d2], how='inner'))
                     Time  A  B
0 2003-12-01 00:00:00.002  2  1
1 2003-12-01 00:00:00.003  3  2

Set parameter match_if_identical_times to only join ticks with the same timestamps:

>>> otp.run(otp.join_by_time([d1, d2], how='inner', match_if_identical_times=True))
                     Time  A  B
0 2003-12-01 00:00:00.001  1  1
1 2003-12-01 00:00:00.002  2  2

Adding prefix to right source for all columns:

>>> otp.run(otp.join_by_time([d1, d2.add_prefix('right_')]))
                     Time  A  right_B
0 2003-12-01 00:00:00.001  1        0
1 2003-12-01 00:00:00.002  2        1
2 2003-12-01 00:00:00.003  3        2

Use parameter output_type_index to specify which input class to use to create output object. It may be useful in case some custom user class was used as input:

>>> class CustomTick(otp.Tick):
...     def custom_method(self):
...         return 'custom_result'
>>> data1 = otp.Tick(A=1)
>>> data2 = CustomTick(B=2)
>>> data = otp.join_by_time([data1, data2], match_if_identical_times=True, output_type_index=1)
>>> type(data)
<class 'onetick.py.functions.CustomTick'>
>>> data.custom_method()
'custom_result'
>>> otp.run(data)
        Time  A  B
0 2003-12-01  1  2

Use parameter source_fields_order to specify the order of output fields:

>>> a = otp.Ticks(A=[1, 2])
>>> b = otp.Ticks(B=[1, 2])
>>> c = otp.Ticks(C=[1, 2])
>>> data = otp.join_by_time([a, b, c], match_if_identical_times=True, source_fields_order=[c, b, a])
>>> otp.run(data)
                     Time  C  B  A
0 2003-12-01 00:00:00.000  1  1  1
1 2003-12-01 00:00:00.001  2  2  2

Indexes can be used too:

>>> data = otp.join_by_time([a, b, c], match_if_identical_times=True, source_fields_order=[1, 2, 0])
>>> otp.run(data)
                     Time  B  C  A
0 2003-12-01 00:00:00.000  1  1  1
1 2003-12-01 00:00:00.001  2  2  2

See also

JOIN_BY_TIME OneTick event processor