otp.RefDB#
- class RefDB(name=None, kind='archive', db_properties=None, db_location=None, write=True, clean_up=True, destroy_access=False)[source]#
Bases:
onetick.py.db.db.DB
Creates reference database object.
- Parameters
name (str) – Database name
clean_up (bool, optional) – Flag that controls temporary database cleanup
db_properties (
dict
, optional) – Properties of database to add to locatordb_location (
dict
, optional) – Location of database to add to locator. Reference database must have a single location, pointing to a continuous archive database.write (bool, optional) – Flag that controls access to write to database
destroy_access (bool, optional) – Flag that controls access to destroy to database
Examples
>>> properties = {'symbology': 'TICKER'} >>> location = {'archive_duration': 'continuous'} >>> ref_db = otp.RefDB('REF_DATA_MYDB', db_properties=properties, db_location=location) >>> session.use(ref_db) >>> data = 'A||20100102000000|20100103000000|B||20100103000000|20100104000000|' >>> out, err = ref_db.put([otp.RefDB.SymbolNameHistory(data, 'TICKER')]) >>> b'Total ticks 8' in err and b'Total symbols 6' in err True >>> properties = {'ref_data_db': ref_db.name, 'symbology': 'TICKER'} >>> db = otp.DB('MYDB', db_properties=properties) >>> session.use(db) >>> data = otp.Ticks(X=['hello'], start=otp.dt(2010, 1, 2), end=otp.dt(2010, 1, 3)) >>> data = otp.run(data.write(db.name, 'A', 'MSG', date=otp.dt(2010, 1, 2))) >>> data = otp.Ticks(X=['world!'], start=otp.dt(2010, 1, 3), end=otp.dt(2010, 1, 4)) >>> data = otp.run(data.write(db.name, 'B', 'MSG', date=otp.dt(2010, 1, 3))) >>> data = otp.DataSource(db.name, tick_type='MSG') >>> s_dt, e_dt, symbol_date = otp.dt(2010, 1, 1), otp.dt(2010, 1, 4), otp.dt(2010, 1, 2) >>> otp.run(data, symbols='A', start=s_dt, end=e_dt, symbol_date=symbol_date) Time X 0 2010-01-02 hello 1 2010-01-03 world!
- put(self, src, tickdb_symbology=None, delta_mode=False, full_integrity_check=False, load_by_sections=True)#
Loads data in database with reference_data_loader.exe. If db properties contain SUPPORT_DELTAS=YES, delta_mode set to True, and proper delta file is used then data is loaded in incremental mode (in other words, replace or modification mode). If the above conditions are not met, reference database content is entirely rewritten with the new data.
- Parameters
src (str, list of str or otp.RefDB.Section) – Path to data file, or list of data per section in specified format
tickdb_symbology (list of str, optional) – All symbologies for which the reference data needs to be generated
delta_mode (bool, default is False) – If set to True loader will perform incremental load. Cannot be used if tickdb_symbology is specified
full_integrity_check (bool, default is False) – If set to True loader checks all mappings to symbologies with symbol name history section and gives warning if mapped securities do not have symbol name history
load_by_sections (bool, default is True) – If set to True loader will perform input data file splitting by data types and symbologies to load each part separately instead loading the entire file at once
- class Section(name, data, attrs=None)#
Bases:
object
Specification of a reference database section. Section content can be specified as a string or otq query. The format of string and output columns of otq query must correspond with the section documentation.
- Parameters
Examples
Data provided as a string:
>>> data = 'SYM1|20100101093000|20100101110000' + os.linesep >>> data += 'SYM2|20100101110000|20100103140000' >>> section = otp.RefDB.Section('SECTION_NAME', data, {'ATTR1': 'VAL1', 'ATTR2': 'VAL2'}) >>> print(section) <SECTION_NAME ATTR1="VAL1" ATTR2="VAL2"> SYM1|20100101093000|20100101110000 SYM2|20100101110000|20100103140000 </SECTION_NAME>
Data provided as a
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['SYM1', 'SYM2'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.Section('SECTION_NAME', ticks, {'ATTR1': 'VAL1', 'ATTR2': 'VAL2'}) >>> print(section) <SECTION_NAME ATTR1="VAL1" ATTR2="VAL2" OTQ_QUERY=...> </SECTION_NAME>
where OTQ_QUERY is path to
otp.Source
, dumped to disk as temporary otq.
- class SymbolNameHistory(data, symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Describes symbol changes for the same security. The continuity can be expressed in terms of any symbol type and can be specified on the security level or the security+exchange level (more explicit).
Examples
>>> data = 'CORE_A||20100101093000|20100101110000|CORE_B||20100101110000|20100103140000|' >>> section = otp.RefDB.SymbolNameHistory(data, symbology='CORE') >>> print(section) <SYMBOL_NAME_HISTORY SYMBOLOGY="CORE"> CORE_A||20100101093000|20100101110000|CORE_B||20100101110000|20100103140000| </SYMBOL_NAME_HISTORY>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['CORE_A'] * 2 >>> data['SYMBOL_NAME_IN_HISTORY'] = ['CORE_A', 'CORE_B'] >>> data['SYMBOL_START_DATETIME'] = [otp.dt(2010, 1, 2, tz='EST5EDT')] * 2 >>> data['SYMBOL_END_DATETIME'] = [otp.dt(2010, 1, 5, tz='EST5EDT')] * 2 >>> data['START_DATETIME'] = [otp.dt(2010, 1, 2, tz='EST5EDT'), otp.dt(2010, 1, 3, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 3, tz='EST5EDT'), otp.dt(2010, 1, 4, tz='EST5EDT')] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.SymbolNameHistory(ticks, symbology='CORE') >>> print(section) <SYMBOL_NAME_HISTORY SYMBOLOGY="CORE" OTQ_QUERY=...> </SYMBOL_NAME_HISTORY>
- class SymbologyMapping(data, source_symbology, dest_symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Describes a history of mapping of symbols of one symbology to the symbols of another symbology.
Examples
>>> data = 'A||20100101093000|20100101110000|CORE_A|' + os.linesep >>> data += 'B||20100101110000|20100103140000|CORE_B|' >>> section = otp.RefDB.SymbologyMapping(data, source_symbology='TICKER', dest_symbology='CORE') >>> print(section) <SYMBOLOGY_MAPPING SOURCE_SYMBOLOGY="TICKER" DEST_SYMBOLOGY="CORE"> A||20100101093000|20100101110000|CORE_A| B||20100101110000|20100103140000|CORE_B| </SYMBOLOGY_MAPPING>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['A', 'B'] >>> data['MAPPED_SYMBOL_NAME'] = ['CORE_A', 'CORE_B'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 2, tz='EST5EDT'), otp.dt(2010, 1, 3, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 3, tz='EST5EDT'), otp.dt(2010, 1, 4, tz='EST5EDT')] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.SymbologyMapping(ticks, source_symbology='TICKER', dest_symbology='CORE') >>> print(section) <SYMBOLOGY_MAPPING SOURCE_SYMBOLOGY="TICKER" DEST_SYMBOLOGY="CORE" OTQ_QUERY=...> </SYMBOLOGY_MAPPING>
- class CorpActions(data, symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Describes corporate actions. Used by OneTick to compute prices adjusted for various types of corporate actions. Supports both built-in and custom (user-defined) types of corporate actions.
Examples
>>> data = 'CORE_C||20100103180000|0.25|0.0|SPLIT' >>> section = otp.RefDB.CorpActions(data, symbology='CORE') >>> print(section) <CORP_ACTIONS SYMBOLOGY="CORE"> CORE_C||20100103180000|0.25|0.0|SPLIT </CORP_ACTIONS>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['CORE_C'] >>> data['EFFECTIVE_DATETIME'] = [otp.dt(2010, 1, 3, 18, tz='EST5EDT')] >>> data['MULTIPLICATIVE_ADJUSTMENT'] = [0.25] >>> data['ADDITIVE_ADJUSTMENT'] = [0.0] >>> data['ADJUSTMENT_TYPE_NAME'] = ['SPLIT'] >>> ticks = otp.Ticks(**data, offset=[0], db='LOCAL') >>> section = otp.RefDB.CorpActions(ticks, symbology='CORE') >>> print(section) <CORP_ACTIONS SYMBOLOGY="CORE" OTQ_QUERY=...> </CORP_ACTIONS>
- class ContinuousContracts(data, symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Describes continuous contracts. Continuity is expressed in terms of stitched history of real contracts and rollover adjustments in between them and can be specified on the continuous contract level or continuous contract+exchange level (more explicit).
Examples
>>> data = 'CC||CORE_A||20100101093000|20100101110000|0.5|0|CORE_B||20100101110000|20100103140000' >>> section = otp.RefDB.ContinuousContracts(data, symbology='CORE') >>> print(section) <CONTINUOUS_CONTRACTS SYMBOLOGY="CORE"> CC||CORE_A||20100101093000|20100101110000|0.5|0|CORE_B||20100101110000|20100103140000 </CONTINUOUS_CONTRACTS>
Equivalent
otp.Source
:>>> data = dict() >>> data['CONTINUOUS_CONTRACT_NAME'] = ['CC'] * 2 >>> data['SYMBOL_NAME'] = ['CORE_A', 'CORE_B'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 2, tz='EST5EDT'), otp.dt(2010, 1, 3, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 3, tz='EST5EDT'), otp.dt(2010, 1, 4, tz='EST5EDT')] >>> data['MULTIPLICATIVE_ADJUSTMENT'] = [0.5, None] >>> data['ADDITIVE_ADJUSTMENT'] = [3, None] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.ContinuousContracts(ticks, symbology='CORE') >>> print(section) <CONTINUOUS_CONTRACTS SYMBOLOGY="CORE" OTQ_QUERY=...> </CONTINUOUS_CONTRACTS>
- class SymbolCurrency(data, symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Specifies symbols’ currencies in 3-letter ISO codes for currencies. These are used for currency conversion (e.g., when calculating portfolio price for a list of securities with different currencies).
Examples
>>> data = 'CORE_A||20100101093000|20100101110000|USD|1.0' + os.linesep >>> data += 'CORE_B||20100101110000|20100103140000|RUB|1.8' >>> section = otp.RefDB.SymbolCurrency(data, symbology='CORE') >>> print(section) <SYMBOL_CURRENCY SYMBOLOGY="CORE"> CORE_A||20100101093000|20100101110000|USD|1.0 CORE_B||20100101110000|20100103140000|RUB|1.8 </SYMBOL_CURRENCY>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['CORE_A', 'CORE_B',] >>> data['CURRENCY'] = ['USD', 'RUB'] >>> data['MULTIPLIER'] = [1., 1.8] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.SymbolCurrency(ticks, symbology='CORE') >>> print(section) <SYMBOL_CURRENCY SYMBOLOGY="CORE" OTQ_QUERY=...> </SYMBOL_CURRENCY>
- class Calendar(data)#
Bases:
onetick.py.db.db.RefDB.Section
Specifies a named calendar. Needed to analyze tick data during specific market time intervals (i.e., during normal trading hours). Can either be used directly in queries as described below, or referred to from the SYMBOL_CALENDAR and EXCH_CALENDAR sections.
Examples
>>> data = 'CAL1|20100101093000|20100101110000|Regular|R|0.0.12345|093000|160000|GMT|1|DESCRIPTION1' >>> data += os.linesep >>> data += 'CAL2|20100101110000|20100103140000|Holiday|F|0.0.12345|094000|170000|GMT|0|DESCRIPTION2' >>> section = otp.RefDB.Calendar(data) >>> print(section) <CALENDAR > CAL1|20100101093000|20100101110000|Regular|R|0.0.12345|093000|160000|GMT|1|DESCRIPTION1 CAL2|20100101110000|20100103140000|Holiday|F|0.0.12345|094000|170000|GMT|0|DESCRIPTION2 </CALENDAR>
Equivalent
otp.Source
:>>> data = dict() >>> data['CALENDAR_NAME'] = ['CAL1', 'CAL2'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> data['SESSION_NAME'] = ['Regular', 'Holiday'] >>> data['SESSION_FLAGS'] = ['R', 'H'] >>> data['DAY_PATTERN'] = ['0.0.12345', '0.0.12345'] >>> data['START_HHMMSS'] = ['093000', '094000'] >>> data['END_HHMMSS'] = ['160000', '170000'] >>> data['TIMEZONE'] = ['GMT', 'GMT'] >>> data['PRIORITY'] = [1, 0] >>> data['DESCRIPTION'] = ['DESCRIPTION1', 'DESCRIPTION2'] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.Calendar(ticks) >>> print(section) <CALENDAR OTQ_QUERY=...> </CALENDAR>
- class SymbolCalendar(data, symbology)#
Bases:
onetick.py.db.db.RefDB.Section
Specifies a calendar for a symbol. Needed to analyze tick data during specific market time intervals (i.e., during normal trading hours). Can either be specified directly or refer to a named calendar by its name (see the CALENDAR section).
Examples
Symbol calendar section, referring to named calendar section:
>>> data = 'CORE_A|20100101093000|20100101110000|CAL1' + os.linesep >>> data += 'CORE_B|20100101110000|20100103140000|CAL2' >>> section = otp.RefDB.SymbolCalendar(data, symbology='CORE') >>> print(section) <SYMBOL_CALENDAR SYMBOLOGY="CORE"> CORE_A|20100101093000|20100101110000|CAL1 CORE_B|20100101110000|20100103140000|CAL2 </SYMBOL_CALENDAR>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['CORE_A', 'CORE_B'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> data['CALENDAR_NAME'] = ['CAL1', 'CAL2'] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.SymbolCalendar(ticks, symbology='CORE') >>> print(section) <SYMBOL_CALENDAR SYMBOLOGY="CORE" OTQ_QUERY=...> </SYMBOL_CALENDAR>
Symbol calendar section without using named calendar section:
>>> data = 'CORE_A|20100101093000|20100101110000|Regular|R|0.0.12345|093000|160000|EST5EDT|1|' + os.linesep >>> data += 'CORE_B|20100101110000|20100103140000|Regular|F|0.0.12345|093000|160000|EST5EDT|1|' >>> section = otp.RefDB.SymbolCalendar(data, symbology='CORE') >>> print(section) <SYMBOL_CALENDAR SYMBOLOGY="CORE"> CORE_A|20100101093000|20100101110000|Regular|R|0.0.12345|093000|160000|EST5EDT|1| CORE_B|20100101110000|20100103140000|Regular|F|0.0.12345|093000|160000|EST5EDT|1| </SYMBOL_CALENDAR>
Equivalent
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['CORE_A', 'CORE_B'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> data['SESSION_NAME'] = ['Regular', 'Regular'] >>> data['SESSION_FLAGS'] = ['R', 'F'] >>> data['DAY_PATTERN'] = ['0.0.12345', '0.0.12345'] >>> data['START_HHMMSS'] = ['093000', '160000'] >>> data['END_HHMMSS'] = ['CAL1', 'CAL2'] >>> data['TIMEZONE'] = ['EST5EDT', 'EST5EDT'] >>> data['PRIORITY'] = [1, 1] >>> data['DESCRIPTION'] = ['', ''] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> section = otp.RefDB.SymbolCalendar(ticks, symbology='CORE') >>> print(section) <SYMBOL_CALENDAR SYMBOLOGY="CORE" OTQ_QUERY=...> </SYMBOL_CALENDAR>
- class SectionStr(name, data, attrs=None)#
Bases:
onetick.py.db.db.RefDB.Section
Specification of a reference database section that can be specified only as a string. Section content still can be provided as a
otp.Source
, but theotp.Source
is executed and result data is used as string in section. It’s up to user to provideotp.Source
with correct number and order of columns.Examples
Data provided as a string returns the same result as
otp.RefDB.Section
.Data provided as a
otp.Source
:>>> data = dict() >>> data['SYMBOL_NAME'] = ['SYM1', 'SYM2'] >>> data['START_DATETIME'] = [otp.dt(2010, 1, 1, 9, 30, tz='EST5EDT'), otp.dt(2010, 1, 1, 11, tz='EST5EDT')] >>> data['END_DATETIME'] = [otp.dt(2010, 1, 1, 11, tz='EST5EDT'), otp.dt(2010, 1, 3, 14, tz='EST5EDT')] >>> ticks = otp.Ticks(**data, offset=[0] * 2, db='LOCAL') >>> ticks = ticks.table(SYMBOL_NAME=otp.string[128], START_DATETIME=otp.msectime, END_DATETIME=otp.msectime) >>> section = otp.RefDB.SectionStr('SECTION_NAME', ticks, {'ATTR1': 'VAL1', 'ATTR2': 'VAL2'}) >>> print(section) <SECTION_NAME ATTR1="VAL1" ATTR2="VAL2"> SYM1|20100101093000|20100101110000 SYM2|20100101110000|20100103140000 </SECTION_NAME>
where OTQ_QUERY is path to
otp.Source
, dumped to disk as temporary otq.
- class PrimaryExchange(data, symbology)#
Bases:
onetick.py.db.db.RefDB.SectionStr
Specifies symbols’ primary exchanges. Used to extract and analyze tick data for a security on its primary exchange, without having to explicitly specify the name of the primary exchange.
Examples
>>> data = 'A||19991118000000|99999999000000|N|' >>> data += os.linesep >>> data += 'AA||19991118000000|99999999000000|N|AA.N' >>> section = otp.RefDB.PrimaryExchange(data, symbology='TICKER') >>> print(section) <PRIMARY_EXCHANGE SYMBOLOGY="TICKER"> A||19991118000000|99999999000000|N| AA||19991118000000|99999999000000|N|AA.N </PRIMARY_EXCHANGE>
Equivalent otq query should return the same data values in the same order. Column names does not matter.
- class ExchCalendar(data, symbology)#
Bases:
onetick.py.db.db.RefDB.SectionStr
Specifies symbols’ primary exchanges. Used to extract and analyze tick data for a security on its primary exchange, without having to explicitly specify the name of the primary exchange.
Examples
>>> data = 'NYSE||19600101000000|20501231235959|Regular|R|0.0.12345|093000|160000|EST5EDT|' >>> data += os.linesep >>> data += 'NYSE||19600101000000|20501231235959|Half-day|RL|12/31|093000|130000|EST5EDT|' >>> data += os.linesep >>> data += 'NYSE||19600101000000|20501231235959|Holiday|H|01/01|000000|240000|EST5EDT|' >>> section = otp.RefDB.ExchCalendar(data, symbology='MIC') >>> print(section) <EXCH_CALENDAR SYMBOLOGY="MIC"> NYSE||19600101000000|20501231235959|Regular|R|0.0.12345|093000|160000|EST5EDT| NYSE||19600101000000|20501231235959|Half-day|RL|12/31|093000|130000|EST5EDT| NYSE||19600101000000|20501231235959|Holiday|H|01/01|000000|240000|EST5EDT| </EXCH_CALENDAR>
If a CALENDAR section is used:
>>> data = 'LSE||19600101000000|20501231235959|WNY' >>> section = otp.RefDB.ExchCalendar(data, symbology='MIC') >>> print(section) <EXCH_CALENDAR SYMBOLOGY="MIC"> LSE||19600101000000|20501231235959|WNY </EXCH_CALENDAR>
Equivalent otq query should return the same data values in the same order. Column names does not matter.
- class SymbolExchange(data, symbology, exchange_symbology)#
Bases:
onetick.py.db.db.RefDB.SectionStr
Specifies the exchange where a security is traded. Needs to be provided for the symbologies where the symbol name is unique across all exchanges.
Examples
>>> data = 'IBM.N|19980825000000|20501231235959|NYSE||' >>> section = otp.RefDB.SymbolExchange(data, symbology='RIC', exchange_symbology='MIC') >>> print(section) <SYMBOL_EXCHANGE SYMBOLOGY="RIC" EXCHANGE_SYMBOLOGY="MIC"> IBM.N|19980825000000|20501231235959|NYSE|| </SYMBOL_EXCHANGE>
Equivalent otq query should return the same data values in the same order. Column names does not matter.