otp.eval#
- eval(query, symbol=None, start=None, end=None, **kwargs)#
Creates an object with
query
with saved parameters that can be used later.It can be used to:
return a list of symbols for which the main query will be executed (multistage queries). Note that in this case
query
must return ticks with column SYMBOL_NAME.return some value dynamically to be used in other places in the main query. Note that in this case
query
must return only single tick.
Note that only constant expressions are allowed in query parameters, they must not depend on ticks.
- Parameters
query (
onetick.py.Source
,onetick.py.query
or function) – source or query to evaluate. If function, then it must returnonetick.py.Source
oronetick.py.query
. Parameter with name symbol and parameters specified inkwargs
will be propagated to this function. Parameter fromkwargs
must be specified in function signature, but parameter symbol may be omitted if it is not used.symbol (
_SymbolParamSource
) – symbol parameter that will be used byquery
as a symbol. If the function is used as aquery
, parameter symbol can be defined in function signature and used in source operations.start (meta field (
MetaFields
) or symbol param (_SymbolParamColumn
)) – start time with whichquery
will be executed. By default the start time for evaluated query is inherited from the main query.end (meta field (
MetaFields
) or symbol param (_SymbolParamColumn
)) – end time with whichquery
will be executed. By default the end time for evaluated query is inherited from the main query.kwargs (str, int, meta fields (
MetaFields
) or symbol params (_SymbolParamColumn
)) – parameters that will be passed toquery
. If the function is used as aquery
, parameters specified inkwargs
must be defined in function signature and can be used in source operations.
Examples
Use
otp.eval
to be passed as symbols when running the query:>>> def fsq(): ... symbols = otp.Ticks(SYMBOL_NAME=['AAPL', 'AAP']) ... return symbols >>> main = otp.DataSource(db='NYSE_TAQ', tick_type='TRD', date=otp.dt(2022, 3, 1)) >>> main['SYMBOL_NAME'] = main.Symbol.name >>> main = otp.merge([main], symbols=otp.eval(fsq)) >>> otp.run(main) Time PRICE SIZE SYMBOL_NAME 0 2022-03-01 00:00:00.000 1.30 100 AAPL 1 2022-03-01 00:00:00.000 45.37 0 AAP 2 2022-03-01 00:00:00.001 1.40 10 AAPL 3 2022-03-01 00:00:00.001 45.41 0 AAP 4 2022-03-01 00:00:00.002 1.40 50 AAPL
Use
otp.eval
as filter:>>> def get_filter(a, b): ... return otp.Tick(WHERE=f'X >= {a} and X < {b}', OTHER_FIELD='X') >>> data = otp.Ticks(X=[1, 2, 3]) >>> data, _ = data[otp.eval(get_filter, a=0, b=2)['WHERE']] >>> otp.run(data) Time X 0 2003-12-01 1
Use
otp.eval
with meta fields:>>> def filter_by_tt(tick_type): ... res = otp.Ticks({ ... 'TICK_TYPE': ['TRD', 'QTE'], ... 'WHERE': ['PRICE>=1.4', 'ASK_PRICE>=1.4'] ... }) ... res, _ = res[res['TICK_TYPE'] == tick_type] ... return res.drop(['TICK_TYPE']) >>> t = otp.DataSource('NYSE_TAQ::TRD') >>> t, _ = t[otp.eval(filter_by_tt, tick_type=t['_TICK_TYPE'])] >>> otp.run(t, start=otp.dt(2022, 3, 1), end=otp.dt(2022, 3, 2)) Time PRICE SIZE 0 2022-03-01 00:00:00.001 1.4 10 1 2022-03-01 00:00:00.002 1.4 50