otp.join_by_time#
- join_by_time(sources, how='outer', on=None, policy=None, check_schema=True, leading=0, match_if_identical_times=None, output_type_index=None, use_rename_ep=True, source_fields_order=None)#
Joins ticks from multiple input time series, based on input tick timestamps.
leadingsource tick joined with already arrived ticks from other sources.>>> leading = otp.Ticks(A=[1, 2], offset=[1, 3]) >>> other = otp.Ticks(B=[1], offset=[2]) >>> otp.run(otp.join_by_time([leading, other])) Time A B 0 2003-12-01 00:00:00.001 1 0 1 2003-12-01 00:00:00.003 2 1
In case you willing to add prefix/suffix to all columns in one of the sources you should use
Source.add_prefix()orSource.add_suffix()- Parameters
sources (Collection[
Source]) – The collection of Source objects which will be joinedhow ('outer' or 'inner') – The method of join (inner or outer)
on (Collection[
Column]) –onadd an extra check to join - only ticks with sameonfields will be joined>>> leading = otp.Ticks(A=[1, 2], offset=[1, 3]) >>> other = otp.Ticks(A=[2, 2], B=[1, 2], offset=[0, 2]) >>> otp.run(otp.join_by_time([leading, other], on=['A'])) Time A B 0 2003-12-01 00:00:00.001 1 0 1 2003-12-01 00:00:00.003 2 2
policy ('arrival_order', 'latest_ticks', 'each_for_leader_with_first' or 'each_for_leader_with_latest') –
Policy of joining ticks with same timestamps
>>> leading = otp.Ticks(A=[1, 2], offset=[0, 0], OMDSEQ=[0, 3]) >>> other = otp.Ticks(B=[1, 2], offset=[0, 0], OMDSEQ=[2, 4])
Note: in the examples below we assume that all ticks have same timestamps, but order of ticks as in example. OMDSEQ is a special field that store order of ticks with same timestamp
arrival_orderoutput tick generated on arrival ofleadingsource tick
>>> data = otp.join_by_time([leading, other], policy='arrival_order') >>> otp.run(data)[['Time', 'A', 'B']] Time A B 0 2003-12-01 1 0 1 2003-12-01 2 1
latest_ticksTick generated at the time of expiration of a particular timestamp (when all ticks from all sources for current timestamp arrived). Only latest tick fromleadingsource will be used.
>>> data = otp.join_by_time([leading, other], policy='latest_ticks') >>> otp.run(data)[['Time', 'A', 'B']] Time A B 0 2003-12-01 2 2
each_for_leader_with_firstEach tick fromleadingsource will be joined with first tick from other sources for current timestamp
>>> data = otp.join_by_time( ... [leading, other], ... policy='each_for_leader_with_first' ... ) >>> otp.run(data)[['Time', 'A', 'B']] Time A B 0 2003-12-01 1 1 1 2003-12-01 2 1
each_for_leader_with_latestEach tick fromleadingsource will be joined with last tick from other sources for current timestamp
>>> data = otp.join_by_time( ... [leading, other], ... policy='each_for_leader_with_latest' ... ) >>> otp.run(data)[['Time', 'A', 'B']] Time A B 0 2003-12-01 1 2 1 2003-12-01 2 2
check_schema (bool) – If True onetick.py will check that all columns names are unambiguous and columns listed in on param are exists in sources schema. Which can lead to false positive error in case of some event processors were sink to Source. To avoid this set check_scheme to False.
leading (int, ‘all’,
Source, list of int, list ofSource) – A list sources or their indexes. If this parameter is ‘all’, every source is considered to be leading.match_if_identical_times (bool) – A True value of this parameter causes an output tick to be formed from input ticks with identical timestamps only. If
onis set to ‘outer’, default values of fields (otp.nan, 0, empty string) are propagated for sources that did not tick at a given timestamp. If this parameter is set to True, the default value ofpolicyparameter is set to ‘latest_ticks’.output_type_index (int) – Specifies index of source in
sourcesfrom which type and properties of output will be taken. Useful when joining sources that inherited fromSource. By default output object type will beSource.use_rename_ep (bool) – Use
onetick.query.RenameFieldsevent processor or not. This event processor can’t be used in generic aggregation.source_fields_order (list of int, list of
Source) – Controls the order of fields in output ticks. If set, all input sources indexes or objects must be specified. By default, the order of the sources is the same as in thesourceslist.
- Returns
A time series of ticks.
- Return type
Sourceor same class assources[output_type_index]
Examples
>>> d1 = otp.Ticks({'A': [1, 2, 3], 'offset': [1, 2, 3]}) >>> d2 = otp.Ticks({'B': [1, 2, 3], 'offset': [1, 2, 4]}) >>> otp.run(otp.join_by_time([d1, d2])) Time A B 0 2003-12-01 00:00:00.001 1 0 1 2003-12-01 00:00:00.002 2 1 2 2003-12-01 00:00:00.003 3 2 >>> otp.run(otp.join_by_time([d1, d2], leading=1)) Time A B 0 2003-12-01 00:00:00.001 1 1 1 2003-12-01 00:00:00.002 2 2 2 2003-12-01 00:00:00.004 3 3 >>> otp.run(otp.join_by_time([d1, d2], leading=1, match_if_identical_times=True)) Time A B 0 2003-12-01 00:00:00.001 1 1 1 2003-12-01 00:00:00.002 2 2 2 2003-12-01 00:00:00.004 0 3
Adding prefix to right source for all columns:
>>> otp.run(otp.join_by_time([d1, d2.add_prefix('right_')])) Time A right_B 0 2003-12-01 00:00:00.001 1 0 1 2003-12-01 00:00:00.002 2 1 2 2003-12-01 00:00:00.003 3 2
Use parameter
output_type_indexto specify which input class to use to create output object. It may be useful in case some custom user class was used as input:>>> class CustomTick(otp.Tick): ... def custom_method(self): ... return 'custom_result' >>> data1 = otp.Tick(A=1) >>> data2 = CustomTick(B=2) >>> data = otp.join_by_time([data1, data2], match_if_identical_times=True, output_type_index=1) >>> type(data) <class 'onetick.py.functions.CustomTick'> >>> data.custom_method() 'custom_result' >>> otp.run(data) Time A B 0 2003-12-01 1 2
Use parameter
source_fields_orderto specify the order of output fields:>>> a = otp.Ticks(A=[1, 2]) >>> b = otp.Ticks(B=[1, 2]) >>> c = otp.Ticks(C=[1, 2]) >>> data = otp.join_by_time([a, b, c], match_if_identical_times=True, source_fields_order=[c, b, a]) >>> otp.run(data) Time C B A 0 2003-12-01 00:00:00.000 1 1 1 1 2003-12-01 00:00:00.001 2 2 2
Indexes can be used too:
>>> data = otp.join_by_time([a, b, c], match_if_identical_times=True, source_fields_order=[1, 2, 0]) >>> otp.run(data) Time B C A 0 2003-12-01 00:00:00.000 1 1 1 1 2003-12-01 00:00:00.001 2 2 2
See also
JOIN_BY_TIME OneTick event processor