otp.agg.ranking#
- ranking(rank_by, show_rank_as, include_tick, bucket_interval=0, bucket_units=None, bucket_time='end', bucket_end_condition=None, boundary_tick_bucket='new', group_by=None, end_condition_per_group=False)#
Ranking running aggregation.
Sorts a series of ticks over a bucket interval using a specified set of tick fields specified in
rank_byand adds a new fieldRANKINGwith the position of the tick in the sort order or the percentage of ticks with values less than (or equal) to the value of the tick.Does not change the order of the ticks.
- Parameters
rank_by (str or list or dict) – Set of fields to sort by. Can be one field specified by string, list of fields or dictionary with field names as keys and
ascordescstring literals as values. Latter allows to specify sorting direction. Default direction isdesc.show_rank_as (str) –
order: calculate number that represents the position of the tick in the sort orderpercent_le_values: calculate the percentage of ticks that have higher or equal value of the position in the sort order, relative to the tickpercent_lt_values: calculate the percentage of ticks that have higher value of the position in the sort order, relative to the tickpercentile_standard: calculate Percentile Rank of the tick in the sort order.
include_tick (bool, default=False) – Specifies whether the current tick should be included in calculations if
show_rank_asispercent_lt_valuesorpercentile_standard.bucket_interval (Union[int, onetick.py.core.column_operations.base.Operation], default=0) –
Determines the length of each bucket (units depends on
bucket_units).If
Operationpassed, acts asbucket_end_condition.bucket_units (Optional[Literal['seconds', 'ticks', 'days', 'months', 'flexible']], default=None) –
Set bucket interval units.
By default, if
bucket_unitsandbucket_end_conditionnot specified, set to seconds. Ifbucket_end_conditionspecified, thenbucket_unitsset to flexible.If set to flexible then
bucket_end_conditionmust be set.Note that seconds bucket unit doesn’t take into account daylight-saving time of the timezone, so you may not get expected results when using, for example, 24 * 60 * 60 seconds as bucket interval. In such case use days bucket unit instead. See example in
onetick.py.agg.sum().bucket_time (Literal['start', 'end'], default=end) –
Control output timestamp.
start
the timestamp assigned to the bucket is the start time of the bucket.
end
the timestamp assigned to the bucket is the end time of the bucket.
bucket_end_condition (condition, default=None) –
An expression that is evaluated on every tick. If it evaluates to “True”, then a new bucket is created. This parameter is only used if
bucket_unitsis set to “flexible”.Also can be set via
bucket_intervalparameter by passingOperationobject.boundary_tick_bucket (Literal['new', 'previous'], default=new) –
Controls boundary tick ownership.
previous
A tick on which
bucket_end_conditionevaluates to “true” belongs to the bucket being closed.new
tick belongs to the new bucket.
This parameter is only used if
bucket_unitsis set to “flexible”group_by (list, str or expression, default=None) – When specified, each bucket is broken further into additional sub-buckets based on specified field values. If
Operationis used then GROUP_{i} column is added. Where i is index in group_by list. For example, if Operation is the only element ingroup_bylist then GROUP_0 field will be added.end_condition_per_group (bool, default=False) –
Controls application of
bucket_end_conditionin groups.end_condition_per_group= Truebucket_end_conditionis applied only to the group defined bygroup_byend_condition_per_group= Falsebucket_end_conditionapplied across all groups
This parameter is only used if
bucket_unitsis set to “flexible”.When set to True, applies to all bucketing conditions. Useful, for example, if you need to specify
group_by, and you want to group items first, and create buckets after that.
Examples
>>> t = otp.Ticks({'A': [1, 2, 3]}) >>> t = t.ranking('A') >>> otp.run(t) Time A RANKING 0 2003-12-01 00:00:00.000 1 3 1 2003-12-01 00:00:00.001 2 2 2 2003-12-01 00:00:00.002 3 1
>>> t = otp.Ticks({'A': [1, 2, 3]}) >>> t = t.ranking({'A': 'asc'}) >>> otp.run(t) Time A RANKING 0 2003-12-01 00:00:00.000 1 1 1 2003-12-01 00:00:00.001 2 2 2 2003-12-01 00:00:00.002 3 3
>>> t = otp.Ticks({'A': [1, 2, 2, 3, 2, 1]}) >>> otp.run(t.ranking({'A': 'asc'}, show_rank_as='percent_lt_values', include_tick=True)) Time A RANKING 0 2003-12-01 00:00:00.000 1 66.666667 1 2003-12-01 00:00:00.001 2 16.666667 2 2003-12-01 00:00:00.002 2 16.666667 3 2003-12-01 00:00:00.003 3 0.000000 4 2003-12-01 00:00:00.004 2 16.666667 5 2003-12-01 00:00:00.005 1 66.666667
>>> otp.run(t.ranking({'A': 'asc'}, show_rank_as='percent_lt_values', include_tick=False)) Time A RANKING 0 2003-12-01 00:00:00.000 1 80.0 1 2003-12-01 00:00:00.001 2 20.0 2 2003-12-01 00:00:00.002 2 20.0 3 2003-12-01 00:00:00.003 3 0.0 4 2003-12-01 00:00:00.004 2 20.0 5 2003-12-01 00:00:00.005 1 80.0
See also
RANKING OneTick event processor