otp.Source.modify_query_times#
- Source.modify_query_times(start=None, end=None, output_timestamp=None, propagate_heartbeats=True, inplace=False)[source]#
Modify
start
andend
time of the query.query times are changed for all operations only before this method up to the source of the graph.
all ticks’ timestamps produced by this method must fall into original time range of the query.
It is possible to change ticks’ timestamps with parameter
output_timestamp
, so they will stay inside the original time range.- Parameters
start (
onetick.py.datetime
orMetaFields
orOperation
) – Expression to replace query start time. By default, start time is not changed. Note that expression in this parameter can’t depend on ticks, thus onlyMetaFields
and constants can be used.end (
onetick.py.datetime
orMetaFields
orOperation
) – Expression to replace query end time. By default, end time is not changed. Note that expression in this parameter can’t depend on ticks, thus onlyMetaFields
and constants can be used.output_timestamp (
onetick.py.Operation
) – Expression that produces timestamp for each tick. By default, the following expression is used:orig_start + orig_timestamp - start
This expression covers cases when start time of the query is changed and keeps timestamp inside original time range. Note that it doesn’t cover cases, for example, if end time was increased, you have to handle such cases yourself.propagate_heartbeats (bool) – Controls heartbeat propagation.
inplace (bool) – The flag controls whether operation should be applied inplace or not. If
inplace=True
, then it returns nothing. Otherwise method returns a new modified object.
- Return type
Source
orNone
Note
Due to how OneTick works internally, tick generators
otp.Tick
andotp.Ticks
are not affected by this method.Examples
>>> start = otp.dt(2022, 3, 2) >>> end = otp.dt(2022, 3, 2) + otp.Milli(3) >>> data = otp.DataSource('NYSE_TAQ', symbols='AAPL', tick_type='TRD')
By default, method does nothing:
>>> t = data.modify_query_times() >>> otp.run(t, start=start, end=end) Time PRICE SIZE 0 2022-03-02 00:00:00.000 1.0 100 1 2022-03-02 00:00:00.001 1.1 101 2 2022-03-02 00:00:00.002 1.2 102
See how
_START_TIME
and_END_TIME
meta fields are changed. They are changed beforemodify_query_times
:>>> t = data.copy() >>> t['S_BEFORE'] = t['_START_TIME'] >>> t['E_BEFORE'] = t['_END_TIME'] >>> t = t.modify_query_times(start=t['_START_TIME'] + otp.Milli(1), ... end=t['_END_TIME'] - otp.Milli(1)) >>> t['S_AFTER'] = t['_START_TIME'] >>> t['E_AFTER'] = t['_END_TIME'] >>> otp.run(t, start=start, end=end) Time PRICE SIZE S_BEFORE E_BEFORE S_AFTER E_AFTER 0 2022-03-02 1.1 101 2022-03-02 00:00:00.001 2022-03-02 00:00:00.002 2022-03-02 2022-03-02 00:00:00.003
You can decrease time interval without problems:
>>> t = data.modify_query_times(start=data['_START_TIME'] + otp.Milli(1), ... end=data['_END_TIME'] - otp.Milli(1)) >>> otp.run(t, start=start, end=end) Time PRICE SIZE 0 2022-03-02 1.1 101
Note that the timestamp of the tick was changed with default expression. In this case we can output original timestamps, because they fall into original time range:
>>> t = data.modify_query_times(start=data['_START_TIME'] + otp.Milli(1), ... end=data['_END_TIME'] - otp.Milli(1), ... output_timestamp=data['TIMESTAMP']) >>> otp.run(t, start=start, end=end) Time PRICE SIZE 0 2022-03-02 00:00:00.001 1.1 101
But it will not work if new time range is wider than original:
>>> t = data.modify_query_times(start=data['_START_TIME'] - otp.Milli(1), ... output_timestamp=data['TIMESTAMP']) >>> otp.run(t, start=start + otp.Milli(1), end=end + otp.Milli(1)) Traceback (most recent call last): Exception...timestamp is falling out of initial start/end time range...
In this case default
output_timestamp
expression would work just fine:>>> t = data.modify_query_times(start=data['_START_TIME'] - otp.Milli(1)) >>> otp.run(t, start=start + otp.Milli(1), end=end + otp.Milli(1)) Time PRICE SIZE 0 2022-03-02 00:00:00.001 1.0 100 1 2022-03-02 00:00:00.002 1.1 101 2 2022-03-02 00:00:00.003 1.2 102
But it doesn’t work, for example, if end time has crossed the borders of original time range. In this case other
output_timestamp
expression must be specified:>>> t = data.modify_query_times( ... start=data['_START_TIME'] - otp.Milli(2), ... output_timestamp=otp.math.min(data['TIMESTAMP'] + otp.Milli(2), data['_END_TIME']) ... ) >>> otp.run(t, start=start + otp.Milli(2), end=end) Time PRICE SIZE 0 2022-03-02 00:00:00.002 1.0 100 1 2022-03-02 00:00:00.003 1.1 101 2 2022-03-02 00:00:00.003 1.2 102
Remember that
start
andend
parameters can’t depend on ticks:>>> t = data.copy() >>> t['X'] = 12345 >>> t = t.modify_query_times(start=t['_START_TIME'] + t['X'] - t['X'], ... end=t['_END_TIME'] - otp.Milli(1)) >>> otp.run(t, start=start, end=end) Traceback (most recent call last): Exception...parameter must not depend on ticks...
Constant datetime values can be used as parameters too:
>>> t = data.modify_query_times(start=start + otp.Milli(1), ... end=end - otp.Milli(1)) >>> otp.run(t, start=start, end=end) Time PRICE SIZE 0 2022-03-02 1.1 101
Note that some graph patterns are not allowed when using this method. For example, modifying query times for a branch that will be merged later:
>>> t1, t2 = data[data['PRICE'] > 1.3] >>> t2 = t2.modify_query_times(start=start + otp.Milli(1)) >>> t = otp.merge([t1, t2]) >>> otp.run(t, start=start, end=end) Traceback (most recent call last): Exception...Invalid graph...time bound to a node...an intermediate node in one of the cycles in graph...
See also
MODIFY_QUERY_TIMES OneTick event processor