Order Book Analytics#

onetick-py offers functions for analyzing tick-by-tick order book. There are three representations of an order book. We’ll show top 3 levels only for the ease of exposition.

A book can be displayed with a tick per level per side. We refer to a level in the book as a ‘price level’ or ‘prl’.

import onetick.py as otp

s = otp.dt(2023, 3, 2, 10)

prl = otp.ObSnapshot(db='CME', tick_type='PRL_FULL', max_levels=3)
# we can use the same timestamp for the start an the end times when we just need a snapshot
otp.run(prl, symbols='NQ\H23', start=s, end=s) 
Time PRICE UPDATE_TIME SIZE LEVEL BUY_SELL_FLAG
0 2023-03-02 10:00:00 11897.00 2023-03-02 09:59:59.993541965 1 1 1
1 2023-03-02 10:00:00 11897.25 2023-03-02 09:59:59.874850291 6 2 1
2 2023-03-02 10:00:00 11897.50 2023-03-02 09:59:59.859827385 8 3 1
3 2023-03-02 10:00:00 11896.75 2023-03-02 09:59:59.994670829 6 1 0
4 2023-03-02 10:00:00 11896.50 2023-03-02 09:59:59.952449109 10 2 0
5 2023-03-02 10:00:00 11896.25 2023-03-02 09:59:59.952450505 14 3 0

Alternatively, a book can show a tick per level with both ask and bid price/size info.

prl = otp.ObSnapshotWide(db='CME', tick_type='PRL_FULL', max_levels=3)
otp.run(prl, symbols='NQ\H23', start=s, end=s)
Time BID_PRICE BID_UPDATE_TIME BID_SIZE ASK_PRICE ASK_UPDATE_TIME ASK_SIZE LEVEL
0 2023-03-02 10:00:00 11896.75 2023-03-02 09:59:59.994670829 6 11897.00 2023-03-02 09:59:59.993541965 1 1
1 2023-03-02 10:00:00 11896.50 2023-03-02 09:59:59.952449109 10 11897.25 2023-03-02 09:59:59.874850291 6 2
2 2023-03-02 10:00:00 11896.25 2023-03-02 09:59:59.952450505 14 11897.50 2023-03-02 09:59:59.859827385 8 3

Finally, all levels can be displayed in one tick.

prl = otp.ObSnapshotFlat(db='CME', tick_type='PRL_FULL', max_levels=3)
print(otp.run(prl, symbols='NQ\H23', start=s, end=s))
                 Time  BID_PRICE1              BID_UPDATE_TIME1  BID_SIZE1  ASK_PRICE1              ASK_UPDATE_TIME1  ASK_SIZE1  BID_PRICE2              BID_UPDATE_TIME2  BID_SIZE2  ASK_PRICE2              ASK_UPDATE_TIME2  ASK_SIZE2  BID_PRICE3              BID_UPDATE_TIME3  BID_SIZE3  ASK_PRICE3              ASK_UPDATE_TIME3  ASK_SIZE3
0 2023-03-02 10:00:00    11896.75 2023-03-02 09:59:59.994670829          6     11897.0 2023-03-02 09:59:59.993541965          1     11896.5 2023-03-02 09:59:59.952449109         10    11897.25 2023-03-02 09:59:59.874850291          6    11896.25 2023-03-02 09:59:59.952450505         14     11897.5 2023-03-02 09:59:59.859827385          8

We can output the book (in any of the three representation) on every change to price/size at any of the levels.

prl = otp.ObSnapshotFlat(db='CME', tick_type='PRL_FULL', max_levels=3, running=True)
prl = prl.drop(r".+TIME\d")
print(otp.run(prl, symbols='NQ\H23', start=s, end=s + otp.Milli(100)))
                             Time  BID_PRICE1  BID_SIZE1  ASK_PRICE1  ASK_SIZE1  BID_PRICE2  BID_SIZE2  ASK_PRICE2  ASK_SIZE2  BID_PRICE3  BID_SIZE3  ASK_PRICE3  ASK_SIZE3
0   2023-03-02 10:00:00.000000000    11896.75          6    11897.00          1    11896.50         10    11897.25          6    11896.25         14    11897.50          8
1   2023-03-02 10:00:00.000348579    11896.75          6    11897.25          6    11896.50         10    11897.50          8    11896.25         14    11897.75         12
2   2023-03-02 10:00:00.000686591    11896.75          7    11897.25          6    11896.50         10    11897.50          8    11896.25         14    11897.75         12
3   2023-03-02 10:00:00.000704727    11896.75          7    11897.25          5    11896.50         10    11897.50          8    11896.25         14    11897.75         12
4   2023-03-02 10:00:00.001020191    11896.75          7    11897.00          1    11896.50         10    11897.25          5    11896.25         14    11897.50          8
..                            ...         ...        ...         ...        ...         ...        ...         ...        ...         ...        ...         ...        ...
252 2023-03-02 10:00:00.096853133    11897.25         10    11897.75          4    11897.00         11    11898.00          8    11896.75         11    11898.25         10
253 2023-03-02 10:00:00.096910329    11897.25         11    11897.75          4    11897.00         11    11898.00          8    11896.75         11    11898.25         10
254 2023-03-02 10:00:00.098742231    11897.50          1    11897.75          4    11897.25         11    11898.00          8    11897.00         11    11898.25         10
255 2023-03-02 10:00:00.098763587    11897.50          1    11897.75          3    11897.25         11    11898.00          8    11897.00         11    11898.25         10
256 2023-03-02 10:00:00.098859719    11897.50          2    11897.75          3    11897.25         11    11898.00          8    11897.00         11    11898.25         10

[257 rows x 13 columns]

The otp.ObSnapshot method doesn’t require specifying max_levels. The entire book is returned when the parameter is not specified.

prl = otp.ObSnapshot(db='CME', tick_type='PRL_FULL') 
otp.run(prl, symbols='NQ\H23', start=s, end=s)
Time PRICE UPDATE_TIME SIZE LEVEL BUY_SELL_FLAG
0 2023-03-02 10:00:00 11897.00 2023-03-02 09:59:59.993541965 1 1 1
1 2023-03-02 10:00:00 11897.25 2023-03-02 09:59:59.874850291 6 2 1
2 2023-03-02 10:00:00 11897.50 2023-03-02 09:59:59.859827385 8 3 1
3 2023-03-02 10:00:00 11897.75 2023-03-02 09:59:59.854529351 12 4 1
4 2023-03-02 10:00:00 11898.00 2023-03-02 09:59:59.871411363 11 5 1
... ... ... ... ... ... ...
1868 2023-03-02 10:00:00 977.75 2023-03-01 17:59:59.997000000 1 1019 0
1869 2023-03-02 10:00:00 643.75 2023-03-01 17:59:59.997000000 1 1020 0
1870 2023-03-02 10:00:00 200.00 2023-03-01 17:59:59.997000000 1 1021 0
1871 2023-03-02 10:00:00 111.00 2023-03-01 17:59:59.997000000 1 1022 0
1872 2023-03-02 10:00:00 1.00 2023-03-01 17:59:59.997000000 1 1023 0

1873 rows × 6 columns

Book Imbalance#

Let’s find the time weighted book imbalance. The imbalance at a given time is defined as the sum of the bid sizes at the top x levels minus the sum of the ask sizes at the top x levels divided by the sum of these two terms: the values close to 1 mean the book is much heavier on the bid side, close to -1 – on the ask side, equal to zero means the sizes are the same.

We display top 3 levels of the book first on every update at any of these levels. There are three ticks (one per level) to represent the book after each update.

x = 3
prl = otp.ObSnapshotWide(db='CME', tick_type='PRL_FULL', max_levels=x, running=True)
otp.run(prl, symbols='NQ\H23', start=s, end=s + otp.Milli(100))
Time BID_PRICE BID_UPDATE_TIME BID_SIZE ASK_PRICE ASK_UPDATE_TIME ASK_SIZE LEVEL
0 2023-03-02 10:00:00.000000000 11896.75 2023-03-02 09:59:59.994670829 6 11897.00 2023-03-02 09:59:59.993541965 1 1
1 2023-03-02 10:00:00.000000000 11896.50 2023-03-02 09:59:59.952449109 10 11897.25 2023-03-02 09:59:59.874850291 6 2
2 2023-03-02 10:00:00.000000000 11896.25 2023-03-02 09:59:59.952450505 14 11897.50 2023-03-02 09:59:59.859827385 8 3
3 2023-03-02 10:00:00.000348579 11896.75 2023-03-02 09:59:59.994670829 6 11897.25 2023-03-02 09:59:59.874850291 6 1
4 2023-03-02 10:00:00.000348579 11896.50 2023-03-02 09:59:59.952449109 10 11897.50 2023-03-02 09:59:59.859827385 8 2
... ... ... ... ... ... ... ... ...
766 2023-03-02 10:00:00.098763587 11897.25 2023-03-02 10:00:00.096910329 11 11898.00 2023-03-02 10:00:00.084378527 8 2
767 2023-03-02 10:00:00.098763587 11897.00 2023-03-02 10:00:00.007823277 11 11898.25 2023-03-02 10:00:00.063950379 10 3
768 2023-03-02 10:00:00.098859719 11897.50 2023-03-02 10:00:00.098859719 2 11897.75 2023-03-02 10:00:00.098763587 3 1
769 2023-03-02 10:00:00.098859719 11897.25 2023-03-02 10:00:00.096910329 11 11898.00 2023-03-02 10:00:00.084378527 8 2
770 2023-03-02 10:00:00.098859719 11897.00 2023-03-02 10:00:00.007823277 11 11898.25 2023-03-02 10:00:00.063950379 10 3

771 rows × 8 columns

Let’s compute the total ask and bid volumes and the corresponding imbalance.

prl = otp.ObSnapshotWide(db='CME', tick_type='PRL_FULL', max_levels=x, running=True)
prl = prl.agg({'ask_vol': otp.agg.sum('ASK_SIZE'), 'bid_vol': otp.agg.sum('BID_SIZE')}, bucket_units='ticks', bucket_interval=x)
prl['imb'] = (prl['bid_vol'] - prl['ask_vol']) / (prl['bid_vol'] + prl['ask_vol'])
otp.run(prl, symbols='NQ\H23', start=s, end=s + otp.Milli(100))
Time ask_vol bid_vol imb
0 2023-03-02 10:00:00.000000000 15 30 0.333333
1 2023-03-02 10:00:00.000348579 26 30 0.071429
2 2023-03-02 10:00:00.000686591 26 31 0.087719
3 2023-03-02 10:00:00.000704727 25 31 0.107143
4 2023-03-02 10:00:00.001020191 14 31 0.377778
... ... ... ... ...
252 2023-03-02 10:00:00.096853133 22 32 0.185185
253 2023-03-02 10:00:00.096910329 22 33 0.200000
254 2023-03-02 10:00:00.098742231 22 23 0.022222
255 2023-03-02 10:00:00.098763587 21 23 0.045455
256 2023-03-02 10:00:00.098859719 21 24 0.066667

257 rows × 4 columns

We can also compute that stats for the imbalance over time.

imb_stats = prl.agg({
    'tw_imb': otp.agg.tw_average('imb'),
    'mean':   otp.agg.average('imb'),
    'stdev':  otp.agg.stddev('imb'),
})
otp.run(imb_stats, symbols='NQ\H23', start=s, end=s + otp.Milli(100))
Time tw_imb mean stdev
0 2023-03-02 10:00:00.100 0.079144 0.000367 0.1479

Book sweep#

There are two version of book sweep: by price and by quantity. Book sweep by price, take a price as an input and returns the total quantity available at that price or better. Book sweep by quantity, takes a quantity as an input and returns the VWAP if the quantity were executed immediately.

prl = otp.ObSnapshot(db='CME', tick_type='PRL_FULL', max_levels=10)
otp.run(prl, symbols='NQ\H23', start=s, end=s)
Time PRICE UPDATE_TIME SIZE LEVEL BUY_SELL_FLAG
0 2023-03-02 10:00:00 11897.00 2023-03-02 09:59:59.993541965 1 1 1
1 2023-03-02 10:00:00 11897.25 2023-03-02 09:59:59.874850291 6 2 1
2 2023-03-02 10:00:00 11897.50 2023-03-02 09:59:59.859827385 8 3 1
3 2023-03-02 10:00:00 11897.75 2023-03-02 09:59:59.854529351 12 4 1
4 2023-03-02 10:00:00 11898.00 2023-03-02 09:59:59.871411363 11 5 1
5 2023-03-02 10:00:00 11898.25 2023-03-02 09:59:59.865033659 14 6 1
6 2023-03-02 10:00:00 11898.50 2023-03-02 09:59:59.852086241 13 7 1
7 2023-03-02 10:00:00 11898.75 2023-03-02 09:59:59.853624043 18 8 1
8 2023-03-02 10:00:00 11899.00 2023-03-02 09:59:59.850077075 16 9 1
9 2023-03-02 10:00:00 11899.25 2023-03-02 09:59:59.963769599 14 10 1
10 2023-03-02 10:00:00 11896.75 2023-03-02 09:59:59.994670829 6 1 0
11 2023-03-02 10:00:00 11896.50 2023-03-02 09:59:59.952449109 10 2 0
12 2023-03-02 10:00:00 11896.25 2023-03-02 09:59:59.952450505 14 3 0
13 2023-03-02 10:00:00 11896.00 2023-03-02 09:59:59.952451831 12 4 0
14 2023-03-02 10:00:00 11895.75 2023-03-02 09:59:59.854319345 12 5 0
15 2023-03-02 10:00:00 11895.50 2023-03-02 09:59:59.851075041 11 6 0
16 2023-03-02 10:00:00 11895.25 2023-03-02 09:59:59.850647593 13 7 0
17 2023-03-02 10:00:00 11895.00 2023-03-02 09:59:59.851678883 18 8 0
18 2023-03-02 10:00:00 11894.75 2023-03-02 09:59:59.876564849 16 9 0
19 2023-03-02 10:00:00 11894.50 2023-03-02 09:59:59.867135353 16 10 0
def side_to_direction(side):
    return 1 if side == 'ASK' else -1

def sweep_by_price(side, price):
    prl = otp.ObSnapshot(db='CME', tick_type='PRL_FULL', side=side)
    direction = side_to_direction(side)
    prl, _ = prl[direction * prl['PRICE'] <= direction * price]
    prl = prl.agg({'total_qty': otp.agg.sum('SIZE')})
    return otp.run(prl, symbols='NQ\H23', start=s, end=s)

print(sweep_by_price('BID', 11896))
print(sweep_by_price('ASK', 11898))
                 Time  total_qty
0 2023-03-02 10:00:00         42
                 Time  total_qty
0 2023-03-02 10:00:00         38
def sweep_by_qty(side, qty):
    prl = otp.ObSnapshot(db='CME', tick_type='PRL_FULL', side=side)
    prl = prl.agg({'total_qty': otp.agg.sum('SIZE')}, running=True, all_fields=True)
    direction = side_to_direction(side)
    prl, _ = prl[prl['total_qty'] - prl['SIZE'] < qty]
    # update the SIZE in the last tick only so that total_qty is exactly qty
    prl['SIZE'] = prl.apply(lambda row: row['SIZE'] - (row['total_qty'] - qty) if row['total_qty'] > qty else row['SIZE'])
    prl = prl.agg({'VWAP': otp.agg.vwap('PRICE', 'SIZE')})
    return otp.run(prl, symbols='NQ\H23', start=s, end=s)
print(sweep_by_qty('BID', 10))
print(sweep_by_qty('ASK', 10))
                 Time      VWAP
0 2023-03-02 10:00:00  11896.65
                 Time     VWAP
0 2023-03-02 10:00:00  11897.3

Market By Order#

Order Book data may be annotated with ‘key’ fields lets us break down the book by each value of the ‘key’ fields. For example, a book could by keyed by market participant ID, allowing us to see the book with the orders of a given market participant only. Some exchanges provide ‘market-by-order’ data where the book is keyed by order id. Set show_full_detail to True to see the book broken down to the most granular level. The example below is a market-by-order book.

prl = otp.ObSnapshot('CME', tick_type='PRL_FULL', side='BID', show_full_detail=True)
prl = prl.first(5)
print(otp.run(prl, symbols='NQ\H23', start=s, end=s))
                 Time UPDATE_TYPE       ORDER_ID  BUY_SELL_FLAG ORDER_TYPE     PRICE  SIZE  TIME_PRIORITY TRADE_ID  FILL_SIZE RECORD_TYPE        DELETED_TIME  TICK_STATUS  OMDSEQ  LEVEL                   UPDATE_TIME
0 2023-03-02 10:00:00           A  6842044209509              0          L  11896.75     1    57348279199                   0           R 1969-12-31 19:00:00            0       3      1 2023-03-02 09:59:59.872343629
1 2023-03-02 10:00:00           A  6842044209501              0          L  11896.75     2    57348279189                   0           R 1969-12-31 19:00:00            0       2      1 2023-03-02 09:59:59.871648081
2 2023-03-02 10:00:00           A  6842044209397              0          L  11896.75     1    57348279042                   0           R 1969-12-31 19:00:00            0      16      1 2023-03-02 09:59:59.859362705
3 2023-03-02 10:00:00           A  6842044209391              0          L  11896.75     1    57348279036                   0           R 1969-12-31 19:00:00            0       2      1 2023-03-02 09:59:59.859081005
4 2023-03-02 10:00:00           M  6842044103605              0          L  11896.75     1    57348279337                   0           R 1969-12-31 19:00:00            0       2      1 2023-03-02 09:59:59.952448809

Market-by-order data can be used to analyze/validate the priority mechanism used by the exchange.``

prl = otp.ObSnapshot('CME', tick_type='PRL_FULL', side='BID', show_full_detail=True)

"""
ORDER_TYPE:
L = Limit order
I = Implied order

Implied liquidity doesn’t have priority as it's always last to execute at any price level. 
It also doesn’t have an order ID, so the IDs that we see in the db are synthetic 
(consisting of 1 or 2 for the 1st/2nd implied level, and E/F for the buy/sell side respectively).

In order to rank the orders within a given price point by priority, we need to sort first by ORDER_TYPE (“L” comes before “I”),
then by TIME_PRIORITY (lowest value comes first).
"""
prl = prl.sort(['LEVEL', 'ORDER_TYPE', 'TIME_PRIORITY'], ascending=[True, False, True])
orders = otp.run(prl, symbols='NQ\H23', start=s, end=s)
orders = orders[['ORDER_ID', 'PRICE', 'LEVEL', 'TIME_PRIORITY','SIZE', 'BUY_SELL_FLAG', 'ORDER_TYPE']]
orders.head()
ORDER_ID PRICE LEVEL TIME_PRIORITY SIZE BUY_SELL_FLAG ORDER_TYPE
0 6842044209391 11896.75 1 57348279036 1 0 L
1 6842044209397 11896.75 1 57348279042 1 0 L
2 6842044209501 11896.75 1 57348279189 2 0 L
3 6842044209509 11896.75 1 57348279199 1 0 L
4 6842044103605 11896.75 1 57348279337 1 0 L