Time-Based Joins#

Time series analysis often involves looking up information from other time series for relevant time ranges. OneTick has built-in functions for this.

join_by_time: Enhancing a time series with information from other time series at the time of each tick#

Below we’ll enhance the trades with the prevailing quote (i.e., best bid and ask) at the time of each trade. We’ll first look just at trades, then just at quotes, and finally we’ll join the two.

Let’s examine the trades first.

import onetick.py as otp

s = otp.dt(2023, 5, 15, 9, 30)
e = otp.dt(2023, 5, 15, 9, 30, 1)

trd = otp.DataSource('NYSE_TAQ', tick_type='TRD')
trd = trd[['PRICE', 'SIZE']]
otp.run(trd, start=s, end=e, symbols=['SPY'])
/home/aserechenko/onetick-py/onetick/__init__.py:43: UserWarning: MAIN_ONE_TICK_DIR environment variable is not set. It is a recommended way to let onetick-py know where OneTick python libraries are located. We will try to use default value for your system: /opt/one_market_data/one_tick.
  warnings.warn(message)
/home/aserechenko/onetick-py/onetick/__init__.py:43: UserWarning: MAIN_ONE_TICK_DIR environment variable is not set. It is a recommended way to let onetick-py know where OneTick python libraries are located. We will try to use default value for your system: /opt/one_market_data/one_tick.
  warnings.warn(message)
Time PRICE SIZE
0 2023-05-15 09:30:00.000178688 412.22 100
1 2023-05-15 09:30:00.000776704 412.22 247
2 2023-05-15 09:30:00.003603456 412.22 100
3 2023-05-15 09:30:00.006352128 412.24 1
4 2023-05-15 09:30:00.007128064 412.24 3
... ... ... ...
310 2023-05-15 09:30:00.934032640 412.27 160
311 2023-05-15 09:30:00.975609344 412.24 2
312 2023-05-15 09:30:00.980264448 412.27 1
313 2023-05-15 09:30:00.985391616 412.28 100
314 2023-05-15 09:30:00.985394944 412.28 100

315 rows × 3 columns

Now let’s take a look at the quotes (or rather the ‘national best bid/offer’).

Note the back_to_first_tick parameter which seeks a tick before query start time and ensures that there is at least one quote at the start of the query (its actual timestamp is before the start).

It’s commonly used when we want to find the tick (e.g., last quote or trade) at a given time:

qte = otp.DataSource('TAQ_NBBO', tick_type='NBBO', back_to_first_tick=86400)
qte = qte[['BID_PRICE', 'ASK_PRICE']]

given_time = otp.dt(2023, 5, 15, 9, 30)
otp.run(qte, start=given_time, end=given_time, symbols=['SPY'])
Time BID_PRICE ASK_PRICE
0 2023-05-15 09:30:00 412.22 412.25

Or when we want to make sure there is tick at the start of the query interval (e.g., to make sure the trades have a prevailing quote even if it’s from before the query start time):

qte = otp.DataSource('TAQ_NBBO', tick_type='NBBO', back_to_first_tick=60)
qte = qte[['BID_PRICE', 'ASK_PRICE']]
otp.run(qte, start=s, end=e, symbols=['SPY'])
Time BID_PRICE ASK_PRICE
0 2023-05-15 09:30:00.000000000 412.22 412.25
1 2023-05-15 09:30:00.000174080 412.22 412.25
2 2023-05-15 09:30:00.000595200 412.22 412.24
3 2023-05-15 09:30:00.000715520 412.21 412.24
4 2023-05-15 09:30:00.000790784 412.22 412.24
... ... ... ...
1150 2023-05-15 09:30:00.979763456 412.27 412.28
1151 2023-05-15 09:30:00.981818880 412.27 412.28
1152 2023-05-15 09:30:00.983727872 412.27 412.28
1153 2023-05-15 09:30:00.983737856 412.27 412.28
1154 2023-05-15 09:30:00.985296640 412.27 412.28

1155 rows × 3 columns

We “enhance” the trades with the information from the quotes.

enh_trd = otp.join_by_time([trd, qte])
otp.run(enh_trd, start=s, end=e, symbols=['SPY'])
Time PRICE SIZE BID_PRICE ASK_PRICE
0 2023-05-15 09:30:00.000178688 412.22 100 412.22 412.25
1 2023-05-15 09:30:00.000776704 412.22 247 412.21 412.24
2 2023-05-15 09:30:00.003603456 412.22 100 412.22 412.24
3 2023-05-15 09:30:00.006352128 412.24 1 412.22 412.25
4 2023-05-15 09:30:00.007128064 412.24 3 412.22 412.25
... ... ... ... ... ...
310 2023-05-15 09:30:00.934032640 412.27 160 412.26 412.28
311 2023-05-15 09:30:00.975609344 412.24 2 412.27 412.28
312 2023-05-15 09:30:00.980264448 412.27 1 412.27 412.28
313 2023-05-15 09:30:00.985391616 412.28 100 412.27 412.28
314 2023-05-15 09:30:00.985394944 412.28 100 412.27 412.28

315 rows × 5 columns

In other words, each trade is joined with the quote that was active at the time the trade took place. We can examine the quote time to make sure it’s before the trade time.

qte['quote_time'] = qte['Time']
enh_trd = otp.join_by_time([trd, qte])
otp.run(enh_trd, start=s, end=e, symbols=['SPY'])
Time PRICE SIZE BID_PRICE ASK_PRICE quote_time
0 2023-05-15 09:30:00.000178688 412.22 100 412.22 412.25 2023-05-15 09:30:00.000174080
1 2023-05-15 09:30:00.000776704 412.22 247 412.21 412.24 2023-05-15 09:30:00.000715520
2 2023-05-15 09:30:00.003603456 412.22 100 412.22 412.24 2023-05-15 09:30:00.003562496
3 2023-05-15 09:30:00.006352128 412.24 1 412.22 412.25 2023-05-15 09:30:00.006343936
4 2023-05-15 09:30:00.007128064 412.24 3 412.22 412.25 2023-05-15 09:30:00.007110656
... ... ... ... ... ... ...
310 2023-05-15 09:30:00.934032640 412.27 160 412.26 412.28 2023-05-15 09:30:00.934030080
311 2023-05-15 09:30:00.975609344 412.24 2 412.27 412.28 2023-05-15 09:30:00.970691840
312 2023-05-15 09:30:00.980264448 412.27 1 412.27 412.28 2023-05-15 09:30:00.979763456
313 2023-05-15 09:30:00.985391616 412.28 100 412.27 412.28 2023-05-15 09:30:00.985296640
314 2023-05-15 09:30:00.985394944 412.28 100 412.27 412.28 2023-05-15 09:30:00.985296640

315 rows × 6 columns

Join-by-time Use Cases#

Prevailing quote at the time of a trade

Computing Markouts

join_with_query: Executing a query on each tick#

Sometimes we want to do a look up based on the information provided in a tick. For example, we may have a series of order ticks each containing an order arrival and exit times and we may want to find the market vwap during the interval. Let’s take this one step at a time.

Let’s find the market vwap for a given time range (i.e., for a given start and end).

q = otp.DataSource('NYSE_TAQ', tick_type='TRD')
q = q.agg({'market_vwap': otp.agg.vwap('PRICE', 'SIZE')})
otp.run(q, start=s, end=e, symbols=['SPY'])
Time market_vwap
0 2023-05-15 09:30:01 412.212012

Next let’s create a couple of orders each with its own values for start/end specified in the arrival/exit columns.

orders = otp.Ticks(arrival=[s, s + otp.Milli(7934)], 
                   exit=[e, e + otp.Milli(9556)],
                   sym=['SPY', 'QQQ'])
otp.run(orders)
Time arrival exit sym
0 2003-12-01 00:00:00.000 2023-05-15 09:30:00.000 2023-05-15 09:30:01.000 SPY
1 2003-12-01 00:00:00.001 2023-05-15 09:30:07.934 2023-05-15 09:30:10.556 QQQ

We can wrap the code that finds vwap into a function and call it for each order while passing the relevant parameters for start, end, and symbol.

def vwap(symbol):
    q = otp.DataSource('NYSE_TAQ', tick_type='TRD')
    q = q.agg({'market_vwap': otp.agg.vwap('PRICE', 'SIZE')})
    return q

orders = otp.Ticks(arrival=[s, s + otp.Milli(7934)], 
                   exit=[e, e + otp.Milli(9556)],
                   sym=['SPY', 'QQQ'])
orders = orders.join_with_query(vwap, start=orders['arrival'], end=orders['exit'], symbol=orders['sym'])
otp.run(orders, start=s, end=s + otp.Day(1))
Time market_vwap arrival exit sym
0 2023-05-15 09:30:00.000 412.212012 2023-05-15 09:30:00.000 2023-05-15 09:30:01.000 SPY
1 2023-05-15 09:30:00.001 325.318988 2023-05-15 09:30:07.934 2023-05-15 09:30:10.556 QQQ

Interval VWAP: the efficient way#

The code above provides an implementation for this use case. However, a more efficient implementation may be useful when the number of orders is large. We provide a more efficient implementation below.

orders['_PARAM_START_TIME_NANOS'] = orders['arrival'] 
orders['_PARAM_END_TIME_NANOS'] = orders['exit'] 
orders['SYMBOL_NAME'] = orders['sym'] 
otp.run(vwap, symbols=orders, start=otp.dt(2022, 12, 1), end=otp.dt(2022, 12, 2))
{'SPY':                  Time  market_vwap
 0 2023-05-15 09:30:01   412.212012,
 'QQQ':                      Time  market_vwap
 0 2023-05-15 09:30:10.556   325.318988}