Source code for onetick.py.oqd.sources

from functools import partial

import pandas as pd

import onetick.py as otp
import onetick.query as otq

from onetick.py import utils
from onetick.py.sources import _start_doc, _end_doc, _symbol_doc
from onetick.py.aggregations._docs import docstring, _param_doc


COMMON_SOURCE_DOC_PARAMS = [_start_doc, _end_doc, _symbol_doc]


def _modify_query_times(src):
    src.sink(otq.ModifyQueryTimes(
        start_time=('parse_time("%Y%m%d %H:%M:%S.%q", '
                    'time_format("%Y%m%d", _START_TIME, _TIMEZONE) + " 00:00:00.000", "GMT")'),
        end_time=('parse_time("%Y%m%d %H:%M:%S.%q", '
                  'time_format("%Y%m%d", _END_TIME, _TIMEZONE) + " 24:00:00.000", "GMT")'),
        output_timestamp='min(max(TIMESTAMP,_START_TIME),_END_TIME)'
    ))


[docs]class OHLCV(otp.Source): """OneQuantData™ source to retrieve a time series of unadjusted prices for a symbol for one particular pricing exchange of daily OHLCV data. Output ticks have fields: OPEN, HIGH, LOW, CLOSE, VOLUME, CURRENCY, EXCH. Parameters ---------- exch : `str`, 'all', 'main' The OneQuantData exchange code for the desired price series. Possible values: - 'all' return data for all exchanges; - 'main' return data main pricing exchange; - any other string value will threated as exchange name to filter data. Default: 'all'. Examples -------- >>> src = otp.oqd.sources.OHLCV(exch="USPRIM") >>> otp.run(src, ... symbols='BTKR::::GOOGL US', ... start=otp.dt(2018, 8, 1), ... end=otp.dt(2018, 8, 2), ... symbol_date=otp.dt(2018, 8, 1)) Time OID EXCH CURRENCY OPEN HIGH LOW CLOSE VOLUME 0 2018-08-01 00:00:00 74143 USPRIM USD 1242.73 1245.72 1225.00 1232.99 605680.0 1 2018-08-01 20:00:00 74143 USPRIM USD 1219.69 1244.25 1218.06 1241.13 596960.0 """ @docstring(parameters=COMMON_SOURCE_DOC_PARAMS, add_self=True) def __init__( self, exch='all', symbol=utils.adaptive, start=utils.adaptive, end=utils.adaptive, **kwargs ): if self._try_default_constructor(**kwargs): return super().__init__( _symbols=symbol, _start=start, _end=end, _base_ep_func=partial(self.build, exch=exch) ) self.schema.set(OID=str, EXCH=str, CURRENCY=str, OPEN=float, HIGH=float, LOW=float, CLOSE=float, VOLUME=float) def build(self, exch): ep = None if exch == 'all': ep = otp.oqd.eps.OqdSourceDprcAll() elif exch == 'main': ep = otp.oqd.eps.OqdSourceDprcMain() else: ep = otp.oqd.eps.OqdSourceDprcExch(exch=exch) src = otp.Source(ep) src.tick_type('OQD::*') _modify_query_times(src) return src
[docs]class CorporateActions(otp.Source): """ OneQuantData™ source EP to retrieve a time series of corporate actions for a symbol. This source will return all corporate action fields available for a symbol with EX-Dates between the query start time and end time. The timestamp of the series is equal to the EX-Date of the corporate action with a time of 0:00:00 GMT. Examples -------- >>> src = otp.oqd.sources.CorporateActions() >>> otp.run(src, ... symbols='TDEQ::::AAPL', ... start=otp.dt(2021, 1, 1), ... end=otp.dt(2021, 8, 6), ... symbol_date=otp.dt(2021, 2, 18), ... timezone='GMT') Time OID ACTION_ID ACTION_TYPE ACTION_ADJUST ACTION_CURRENCY ANN_DATE EX_DATE PAY_DATE REC_DATE\ TERM_NOTE TERM_RECORD_TYPE ACTION_STATUS 0 2021-02-05 9706 16799540 CASH_DIVIDEND 0.205 USD 20210127 20210205 20210211 20210208\ CASH:0.205@USD NORMAL 1 2021-05-07 9706 17098817 CASH_DIVIDEND 0.220 USD 20210428 20210507 20210513 20210510\ CASH:0.22@USD NORMAL 2 2021-08-06 9706 17331864 CASH_DIVIDEND 0.220 USD 20210727 20210806 20210812 20210809\ CASH:0.22@USD NORMAL """ @docstring(parameters=COMMON_SOURCE_DOC_PARAMS, add_self=True) def __init__( self, symbol=utils.adaptive, start=utils.adaptive, end=utils.adaptive, **kwargs ): if self._try_default_constructor(**kwargs): return super().__init__( _symbols=symbol, _start=start, _end=end, _base_ep_func=partial(self.build) ) self.schema.set(OID=str, ACTION_ID=int, ACTION_TYPE=str, ACTION_ADJUST=float, ACTION_CURRENCY=str, ANN_DATE=int, EX_DATE=int, PAY_DATE=int, REC_DATE=int, TERM_NOTE=str, TERM_RECORD_TYPE=str, ACTION_STATUS=str) def build(self): ep = otp.oqd.eps.OqdSourceCacs() src = otp.Source(ep) src.tick_type('OQD::*') _modify_query_times(src) return src
[docs]class DescriptiveFields(otp.Source): """OneQuantData™ source to retrieve a time series of descriptive fields for a symbol. There will only be ticks on days when some field in the descriptive data changes. Output ticks will have fields: OID, END_DATE, COUNTRY, EXCH, NAME, ISSUE_DESC, ISSUE_CLASS, ISSUE_TYPE, ISSUE_STATUS, SIC_CODE, IDSYM, TICKER, CALENDAR. Note: currently actual fields have 9999 year in END_DATE, but it could not fit the nanosecond timespamp, so it is replaced with 2035-01-01 date. Examples -------- >>> src = otp.oqd.sources.DescriptiveFields() >>> otp.run(src, ... symbols='1000001589', ... start=otp.dt(2020, 3, 1), ... end=otp.dt(2023, 3, 2), ... timezone='GMT').iloc[:6] Time OID END_DATE COUNTRY EXCH NAME ISSUE_DESC\ ISSUE_CLASS ISSUE_TYPE ISSUE_STATUS SIC_CODE IDSYM TICKER CALENDAR 0 2020-03-01 1000001589 2020-03-23 LUX EL^X INVESTEC GLOBAL ST EUROPEAN HIGH YLD BD INC 2\ FUND NORMAL B2PT4G9 1 2020-03-23 1000001589 2020-04-01 LUX EL^X NINETY ONE LIMITED EUROPEAN HIGH YLD BD INC 2\ FUND NORMAL B2PT4G9 2 2020-04-01 1000001589 2021-01-01 LUX EL^X NINETY ONE LUX S.A EUROPEAN HIGH YLD BD INC 2\ FUND NORMAL B2PT4G9 3 2021-01-01 1000001589 2021-06-18 LUX EL^X NINETY ONE LUX S.A EUROPEAN HIGH YLD BD INC 2\ FUND NORMAL B2PT4G9 4 2021-06-18 1000001589 2022-01-01 LUX EL^X NINETY ONE LUX S.A GSF GBL HIGH YLD A2 EUR DIS\ FUND NORMAL B2PT4G9 5 2022-01-01 1000001589 2022-01-28 LUX EL^X NINETY ONE LUX S.A GSF GBL HIGH YLD A2 EUR DIS\ FUND NORMAL B2PT4G9 """ @docstring(parameters=COMMON_SOURCE_DOC_PARAMS, add_self=True) def __init__( self, symbol=utils.adaptive, start=utils.adaptive, end=utils.adaptive, **kwargs ): if self._try_default_constructor(**kwargs): return super().__init__( _symbols=symbol, _start=start, _end=end, _base_ep_func=partial(self.build) ) self.schema.set( OID=str, END_DATE=otp.nsectime, COUNTRY=str, EXCH=str, NAME=str, ISSUE_DESC=str, ISSUE_CLASS=str, ISSUE_TYPE=str, ISSUE_STATUS=str, SIC_CODE=str, IDSYM=str, TICKER=str, CALENDAR=str,) def build(self): ep = otp.oqd.eps.OqdSourceDes() src = otp.Source(ep) src.tick_type('OQD::*') _modify_query_times(src) # work-around to resolve problem with pandas timestamp out of bounds pd_max = pd.Timestamp.max.strftime('%Y%m%d%H%M%S') src.sink(otq.UpdateFields( set='END_DATE=PARSE_NSECTIME("%Y-%m-%d", "2035-01-01", _TIMEZONE)', where=f'AS_YYYYMMDDHHMMSS(END_DATE) > {pd_max}')) return src
[docs]class SharesOutstanding(otp.Source): """ Logic is implemented in OQD_SOURCE_SHO EP to retrieve a time series of shares outstanding for a stock. The source retrieves a time series of shares outstanding for a stock. This source only applies to stocks or securities that have published shares outstanding data. The series represents total shares outstanding and is not free float adjusted. Note: currently actual fields have 9999 year in END_DATE, but it could not fit the nanosecond timespamp, so it is replaced with 2035-01-01 date. Examples -------- >>> src = otp.oqd.sources.SharesOutstanding() >>> otp.run(src, ... symbols='TDEQ::::AAPL', ... start=otp.dt(2021, 1, 1), ... end=otp.dt(2021, 8, 6), ... symbol_date=otp.dt(2021, 2, 18), ... timezone='GMT') Time OID END_DATE REPORT_MONTH SHARES 0 2021-01-01 9706 2021-01-06 202009 1.700180e+10 1 2021-01-06 9706 2021-01-29 202009 1.682326e+10 2 2021-01-29 9706 2021-05-03 202012 1.678810e+10 3 2021-05-03 9706 2021-07-30 202103 1.668763e+10 4 2021-07-30 9706 2021-10-29 202106 1.653017e+10 """ @docstring(parameters=COMMON_SOURCE_DOC_PARAMS, add_self=True) def __init__( self, symbol=otp.utils.adaptive, start=otp.utils.adaptive, end=otp.utils.adaptive, **kwargs ): if self._try_default_constructor(**kwargs): return super().__init__( _symbols=symbol, _start=start, _end=end, _base_ep_func=partial(self.build) ) self.schema.set(OID=str, END_DATE=otp.nsectime, REPORT_MONTH=int, SHARES=int) def build(self): ep = otp.oqd.eps.OqdSourceSho() src = otp.Source(ep) src.tick_type('OQD::*') _modify_query_times(src) # work-around to resolve problem with pandas timestamp out of bounds pd_max = pd.Timestamp.max.strftime('%Y%m%d%H%M%S') src.sink(otq.UpdateFields( set='END_DATE=PARSE_NSECTIME("%Y-%m-%d", "2035-01-01", _TIMEZONE)', where=f'AS_YYYYMMDDHHMMSS(END_DATE) > {pd_max}')) return src