Symbologies#

import onetick.py as otp

You can query data using different symbologies.

trd = otp.DataSource('NYSE_TAQ', tick_type='TRD')
trd = trd[['PRICE','SIZE','EXCHANGE','COND']]
trd = trd.first(1)
merged = otp.merge([trd], symbols=['BTKR::::AAPL US','FGV::::btkr000BPH459'], identify_input_ts=True)
otp.run(merged, start=otp.dt(2022,3,1,10), end=otp.dt(2022,3,1,10,15), symbol_date=otp.dt(2022, 10, 1))
Time PRICE SIZE EXCHANGE COND SYMBOL_NAME TICK_TYPE
0 2022-03-01 10:00:04.133843068 164.01 1 P @ TI BTKR::::AAPL US TRD

You can create a mapping between symbologies.

figi = otp.Symbols('NYSE_TAQ', symbology='FGV', show_original_symbols=True, for_tick_type='TRD')
figi, _ = figi[figi['SYMBOL_NAME']!='']
otp.run(figi, start=otp.dt(2022, 12, 1), end=otp.dt(2022, 12, 2))
Time SYMBOL_NAME ORIGINAL_SYMBOL_NAME
0 2022-12-01 BBG000C2V3D6 NYSE_TAQ::A
1 2022-12-01 BBG00B3T3HD3 NYSE_TAQ::AA
2 2022-12-01 BBG01B0JRCS6 NYSE_TAQ::AAA
3 2022-12-01 BBG00LPXX872 NYSE_TAQ::AAAU
4 2022-12-01 BBG00YZC2Z91 NYSE_TAQ::AAC
... ... ... ...
11007 2022-12-01 BBG00YZ7S2J6 NYSE_TAQ::ZWRKW
11008 2022-12-01 BBG000H8R0N8 NYSE_TAQ::ZWS
11009 2022-12-01 BBG019XSYC89 NYSE_TAQ::ZYME
11010 2022-12-01 BBG007BBS8B7 NYSE_TAQ::ZYNE
11011 2022-12-01 BBG000BJBXZ2 NYSE_TAQ::ZYXI

11012 rows × 3 columns

btkr = otp.Symbols('NYSE_TAQ', symbology='BTKR', show_original_symbols=True, for_tick_type='TRD')
btkr, _ = btkr[btkr['SYMBOL_NAME']!='']
otp.run(btkr, start=otp.dt(2022, 12, 1), end=otp.dt(2022, 12, 2))
Time SYMBOL_NAME ORIGINAL_SYMBOL_NAME
0 2022-12-01 A US NYSE_TAQ::A
1 2022-12-01 AA US NYSE_TAQ::AA
2 2022-12-01 AAA US NYSE_TAQ::AAA
3 2022-12-01 AAAU US NYSE_TAQ::AAAU
4 2022-12-01 AAC US NYSE_TAQ::AAC
... ... ... ...
10926 2022-12-01 ZWRKW US NYSE_TAQ::ZWRKW
10927 2022-12-01 ZWS US NYSE_TAQ::ZWS
10928 2022-12-01 ZYME US NYSE_TAQ::ZYME
10929 2022-12-01 ZYNE US NYSE_TAQ::ZYNE
10930 2022-12-01 ZYXI US NYSE_TAQ::ZYXI

10931 rows × 3 columns

figi = otp.Symbols('NYSE_TAQ', symbology='FGV', show_original_symbols=True, for_tick_type='TRD')
btkr = otp.Symbols('NYSE_TAQ', symbology='BTKR', show_original_symbols=True, for_tick_type='TRD')
btkr, _ = btkr[btkr['SYMBOL_NAME']!='']
figi, _ = figi[figi['SYMBOL_NAME']!='']

mapping = otp.functions.join(figi, btkr, on=btkr['ORIGINAL_SYMBOL_NAME']==figi['ORIGINAL_SYMBOL_NAME'], how="inner")

mapping  = mapping.rename({'RIGHT_SYMBOL_NAME'   : 'BTKR',
                           'SYMBOL_NAME'         : 'FIGI',
                           'ORIGINAL_SYMBOL_NAME': 'DB_SYMBOL'})

mapping = mapping[['FIGI', 'BTKR', 'DB_SYMBOL']]

otp.run(mapping, start=otp.dt(2022, 12, 1), end=otp.dt(2022, 12, 2))
Time FIGI BTKR DB_SYMBOL
0 2022-12-01 BBG000C2V3D6 A US NYSE_TAQ::A
1 2022-12-01 BBG00B3T3HD3 AA US NYSE_TAQ::AA
2 2022-12-01 BBG01B0JRCS6 AAA US NYSE_TAQ::AAA
3 2022-12-01 BBG00LPXX872 AAAU US NYSE_TAQ::AAAU
4 2022-12-01 BBG00YZC2Z91 AAC US NYSE_TAQ::AAC
... ... ... ... ...
11005 2022-12-01 BBG00YZ7S2J6 ZWRKW US NYSE_TAQ::ZWRKW
11006 2022-12-01 BBG000H8R0N8 ZWS US NYSE_TAQ::ZWS
11007 2022-12-01 BBG019XSYC89 ZYME US NYSE_TAQ::ZYME
11008 2022-12-01 BBG007BBS8B7 ZYNE US NYSE_TAQ::ZYNE
11009 2022-12-01 BBG000BJBXZ2 ZYXI US NYSE_TAQ::ZYXI

11010 rows × 4 columns

And here is an example for a non-US market

# 'FGV' is venue FIGI
# 'FGC' is composite FIGI
fgv = otp.Symbols('LSE', symbology='FGV', show_original_symbols=True, for_tick_type='TRD')
tkr = otp.Symbols('LSE', symbology='TKR', show_original_symbols=True, for_tick_type='TRD')

mapping = otp.functions.join(fgv, tkr, on=fgv['ORIGINAL_SYMBOL_NAME']==tkr['ORIGINAL_SYMBOL_NAME'], how="inner")

mapping, _ = mapping[mapping['SYMBOL_NAME'] != '']
mapping  = mapping.rename({'RIGHT_SYMBOL_NAME'   : 'TICKER',
                           'SYMBOL_NAME'         : 'FIGI',
                           'ORIGINAL_SYMBOL_NAME': 'DB_SYMBOL'})

mapping = mapping[['TICKER', 'FIGI', 'DB_SYMBOL']]
start = otp.dt(2022, 5, 20)
end = otp.dt(2022, 5, 25)

otp.run(mapping, start=otp.dt(2022, 12, 1), end=otp.dt(2022, 12, 2))
Time TICKER FIGI DB_SYMBOL
0 2022-12-01 020Y BBG007XBDG85 LSE::020Y
1 2022-12-01 0A05 BBG00SYG7Q00 LSE::0A05
2 2022-12-01 0A07 BBG00NWMW214 LSE::0A07
3 2022-12-01 0A08 BBG00NWMVL13 LSE::0A08
4 2022-12-01 0A0B BBG00NWMW143 LSE::0A0B
... ... ... ... ...
5332 2022-12-01 ZNWD BBG00JG082G0 LSE::ZNWD
5333 2022-12-01 ZOO BBG000DBR279 LSE::ZOO
5334 2022-12-01 ZPHR BBG000DB8YK5 LSE::ZPHR
5335 2022-12-01 ZTF BBG000BGXLF2 LSE::ZTF
5336 2022-12-01 ZYT BBG000BZPV76 LSE::ZYT

5337 rows × 4 columns

Symbol name changes#

Symbol name changes are easy to handle with the symbol_date parameter of otp.run() which provides the “as of” date for the symbols. For example, you can pass META while setting symbol_date to any date after 2022-06-09 or FB and symbol_date before 2022-06-09.

trd = otp.DataSource('NYSE_TAQ', tick_type='TRD')
trd = trd.first(5)
otp.run(trd, start=otp.dt(2023,2,2), end=otp.dt(2023,2,3), symbols='META', symbol_date=otp.dt(2023,2,2))
Time EXCHANGE COND STOP_STOCK SOURCE TRF TTE TICKER PRICE DELETED_TIME TICK_STATUS SIZE CORR SEQ_NUM TRADE_ID PARTICIPANT_TIME TRF_TIME OMDSEQ
0 2023-02-02 00:00:00.100474511 Q @ TI N 0 META 183.13 1970-01-01 0 10 0 7286117 160978 2023-02-02 00:00:00.100458331 1970-01-01 00:00:00.000000000 0
1 2023-02-02 00:00:00.825173183 Q @FT N 1 META 183.13 1970-01-01 0 100 0 7286118 160979 2023-02-02 00:00:00.825157012 1970-01-01 00:00:00.000000000 0
2 2023-02-02 00:00:00.835111354 K @ TI N 1 META 183.18 1970-01-01 0 2 0 7286119 54129 2023-02-02 00:00:00.834865000 1970-01-01 00:00:00.000000000 0
3 2023-02-02 00:00:00.837461982 Q @ TI N 0 META 183.18 1970-01-01 0 5 0 7286123 160980 2023-02-02 00:00:00.837446438 1970-01-01 00:00:00.000000000 0
4 2023-02-02 00:00:00.877120054 D @ TI N Q 0 META 183.13 1970-01-01 0 13 0 7286124 117854 2023-02-02 00:00:00.875000000 2023-02-02 00:00:00.877093881 0
trd = otp.DataSource('NYSE_TAQ', tick_type='TRD')
trd = trd.first(5)
otp.run(trd, start=otp.dt(2023,2,2), end=otp.dt(2023,2,3), symbols='FB', symbol_date=otp.dt(2021,2,2))
Time EXCHANGE COND STOP_STOCK SOURCE TRF TTE TICKER PRICE DELETED_TIME TICK_STATUS SIZE CORR SEQ_NUM TRADE_ID PARTICIPANT_TIME TRF_TIME OMDSEQ
0 2023-02-02 00:00:00.100474511 Q @ TI N 0 META 183.13 1970-01-01 0 10 0 7286117 160978 2023-02-02 00:00:00.100458331 1970-01-01 00:00:00.000000000 0
1 2023-02-02 00:00:00.825173183 Q @FT N 1 META 183.13 1970-01-01 0 100 0 7286118 160979 2023-02-02 00:00:00.825157012 1970-01-01 00:00:00.000000000 0
2 2023-02-02 00:00:00.835111354 K @ TI N 1 META 183.18 1970-01-01 0 2 0 7286119 54129 2023-02-02 00:00:00.834865000 1970-01-01 00:00:00.000000000 0
3 2023-02-02 00:00:00.837461982 Q @ TI N 0 META 183.18 1970-01-01 0 5 0 7286123 160980 2023-02-02 00:00:00.837446438 1970-01-01 00:00:00.000000000 0
4 2023-02-02 00:00:00.877120054 D @ TI N Q 0 META 183.13 1970-01-01 0 13 0 7286124 117854 2023-02-02 00:00:00.875000000 2023-02-02 00:00:00.877093881 0